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Abstract The self-similarity solutions of the Navier-Stokes equations are constructed
for an incompressible laminar flow through a uniformly porous channel with retractable
walls under a transverse magnetic field. The flow is driven by the expanding or contracting
walls with different permeability. The velocities of the asymmetric flow at the upper and
lower walls are different in not only the magnitude but also the direction. The asymptotic
solutions are well constructed with the method of boundary layer correction in two cases
with large Reynolds numbers, i.e., both walls of the channel are with suction, and one of
the walls is with injection while the other one is with suction. For small Reynolds number
cases, the double perturbation method is used to construct the asymptotic solution. All
the asymptotic results are finally verified by numerical results.
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1 Introduction

The studies of laminar flow through porous channels with retractable walls have received
extensive attention in the fields of fluid and mathematics due to their close connections with
massive biological and engineering problems, e.g., blood flow in vessels, nutrition liquid trans-
port in biological organisms, mass transfer among blood, air, and tissue, uniformly distributed
irrigation, and natural transpiration. The electrically conducting viscous fluid in a channel
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with permeable walls can be used to simulate the biological problems. Taking blood flow in
vessels as an example, when the blood is considered as an electrically conducting fluid, Higashi
et al.[1] showed that the magnetic field has a significant effect on the vascular system based on
the experimental investigation.

Berman[2] analyzed the two-dimensional steady laminar flow of a viscous incompressible
fluid through a porous channel with uniform injection or suction by full using the symmetry to
simplify the model for the first time, and reduced the Navier-Stokes equations to a fourth-order
nonlinear ordinary differential equation with a parameter R (see Section 2 for its definition)
and four boundary conditions. Numerous studies about the laminar flow in a channel with
permeable walls followed. Yuan[3] derived an asymptotic solution for the large injection case.
Terrill[4] improved the solution by considering the inner layer. Sellars[5] and Terrill[6] investigated
the large suction cases, and derived an asymptotic solution. Afterwards, in order to precisely
simulate the blood flow, Uchida and Aoki[7] investigated the unsteady laminar flow driven by a
single contraction or expansion of the channel walls. Goto and Uchida[8] studied the laminar flow
in a semi-infinite porous pipe, the radius of which varied with time. Majdalani et al.[9] studied
the laminar flow between slowly expanding or contracting walls, and obtained the similarity
solution to describe the transport of biological fluids. Majdalani and Zhou[10] investigated
the large injection and suction cases in a channel with retractable walls, and obtained the
asymptotic solutions. For more details, one may refer to Asghar et al.[11], Xu et al.[12], and
Dauenhauer and Majdalani[13].

Suryaprakasrao[14] investigated the laminar flow of an electrically-conductive viscous fluid
in a porous channel under a transverse magnetic field for the first time, and obtained the
asymptotic solution for the case with a small suction Reynolds number and small magnetic field
number. Terrill and Shrestha[15–16] and Shrestha[17] made further extension of Suryaprakasrao’s
work, and obtained the asymptotic solutions for large suction and injection Reynolds numbers
and all values of the Hartamnn number. Based on these works, investigators began to take
account of the wall motion[18].

The asymmetric laminar flow caused by different wall permeability can be traced back to
Proudman[19], who proposed the asymmetric flow for the first time. Terrill and Shrestha[20–21]

and Shrestha and Terrill[22] extended Proudman’s work, and obtained a series of asymptotic
solutions with the method of matched asymptotic expansions for large injection, large suction,
and mixed cases. Cox[23] and King and Cox[24] considered the problem of steady and unsteady
flow in a channel with only one porous wall. Zhang et al.[25] studied the asymmetric flow
analytically and numerically. However, these asymmetric work did not consider the cases with
wall motion and a transverse magnetic filed in a channel.

In this paper, we will investigate the general asymmetric flow of an incompressible viscous
fluid through a porous and retractable channel with a transverse magnetic field, and present
the asymptotic solutions. The paper is arranged as follows. In Section 2, the formulation of the
problem is presented by reducing the Navier-Stokes equations into a nonlinear ordinary differ-
ential equation via a similarity transformation. In Section 3, the effects of the magnetic field
on the solution is examined, and the asymptotic solutions for different orders of the Reynolds
number and the Hartman number are obtained. In Section 4, the asymptotic solutions for large
Reynolds numbers in the case that one wall of the channel is with injection while the other
wall is with suction are constructed. In Section 5, an asymptotic solution for the case of slowly
contracting and weak permeability is presented. In Section 6, all the obtained solutions are
verified by the numerical solutions. The summarization is given in Section 7 finally.

2 Mathematical formulation

The equations of continuity and momentum for the unsteady laminar flow of an incompress-
ible viscous and electrically conducting fluid through a porous and retractable channel in a
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transverse magnetic field are

∇ · V = 0, (1)

∂V

∂t
+ (V · ∇)V = −

1

ρ
∇p + ν∇2

V +
1

ρ
J × B, (2)

where J and B are given by the Maxwell equations

∇× H = 4πJ , (3)

∇× E = 0, (4)

∇ · B = 0 (5)

and the Ohm law
J = σ(E + V × B). (6)

In the above equations, B = µmH . The symbol J represents the current density, E is the elec-
tric field, H is the magnetic field, ν is the viscosity of the fluid, σ is the electrical conductivity,
and µm is the magnetic permeability. An elongated rectangular channel with a sufficiently large
aspect ratio of width L to height h(t) and one closed end is considered. Despite the finite body
length, it is reasonable to assume that the length of the channel is semi-infinite in order to
neglect the effect of the opening at the end[7]. The permeability of both walls, which expand
or contract uniformly at a time-dependent rate ḣ(t), is different. It is assumed that the fluid
velocity is −v1 at the lower wall and −v2 at the upper wall. Furthermore, a constant magnetic
field with the strength H0 is applied perpendicular to the walls. We take H = (0, H0, 0) and
E = (0, E0, 0). It is assumed that there is no external electric field and the effects of the
magnetic and electric fields produced by the motion of the electrically conducting fluid can be
neglected[14–16]. Then, the magnetic term J ×B of the body force in Eq. (2) can be reduced to

J × B = −σB0
2
V , (7)

where B0 = µmH0. In the two-dimensional problem, let x̃ and ỹ be the coordinates measured
along and perpendicular to the flow direction, respectively, u and v be the velocity components,
i.e., V = (u, v, 0), in the x̃- and ỹ-directions, respectively.

The boundary conditions satisfied by the flow are






u(x̃,−h) = 0, v(x̃,−h) = −v1 = −A1ḣ,

u(x̃, h) = 0, v(x̃, h) = −v2 = −A2ḣ,
(8)

where A1 and A2 are constant measures of the permeability of the lower and upper walls,
respectively. We introduce the following stream function[10]:

φ =
νx̃

h
F (y, t), (9)

where y = ỹ/h is the dimensionless height. Then, the velocity components are given by

u =
∂φ

∂ỹ
=

νx̃

h2
Fy, v = −

∂φ

∂x̃
= −

ν

h
F, (10)

so that the continuity equation (1) is naturally satisfied. Assume |v2| > |v1|. Without loss of
generality, substitute Eqs. (10) and (7) into Eqs. (1) and (2). Then, we have

f ′′′ + α(yf ′′ + 2f ′) + R(ff ′′ − f ′2) − M2f ′ = K(R) (11)
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with the boundary conditions

f(−1) = 1 − α2, f ′(−1) = 0, f(1) = 1, f ′(1) = 0, (12)

where α is the wall expansion ratio defined by α = hḣ
ν

(positive for expansion and negative for

contraction), R = v2h
ν

is the Reynolds number (positive for injection and negative for suction),

M = µmH0h( σ
ρν

)
1

2 is the Hartman number, α2 = 1− v1

v2

is an asymmetric parameter, and K is
an integration constant. Similar derivations for transforming the Navier-Stokes equation into
Eq. (11) can be referred to Majdalani et al.[9]. The fluid flow through the channel is symmetric
about the center line of the channel for α2 = 2. In this paper, we will mainly focus on the
asymmetric flow.

3 Asymptotic solutions for the large suction case

In this section, we will consider the case that both walls of the channel are with large suction
and the suction velocities on the upper and lower walls are different. Asymptotic solutions will
be constructed for α = O(1) and M2 = O(1) as R → −∞ and for α = O(1) and M2 = O(R)
as R → −∞, respectively.
3.1 Asymptotic solutions for large suction Reynolds numbers

For the large suction case, assume v1 > 0 > v2. Take ε = − 1
R

> 0 as a perturbation
parameter. Then, Eq. (11) can be rewritten as follows:

εf ′′′ + εα(yf ′′ + 2f ′) − (ff ′′ − f ′2) − εM2f ′ = k, (13)

where εK(R) = k, which is the equation to be solved for the suction case subject to Eq. (12).
If the channel wall is with large suction, there exists a boundary layer near the upper wall
when M = 0 and α2 = 2[10]. Therefore, there may be a boundary layer near both walls, and
the correction near both walls may be needed. We thus use the method of boundary layer
correction[27] to construct the asymptotic solution. The solution can be expanded as follows:

f = f0(y) + ε(f1(y) + g1(τ) + h1(η)) + ε2(f2(y) + g2(τ) + h2(η)) + · · · . (14)

The integrating constant k can be written as follows:

k = k0 + εk1 + ε2k2 + · · · . (15)

In the above equations, τ = 1−y
ε

and η = 1+y
ε

are the stretching transformations near y = 1
and y = −1, respectively, and gi(τ) and hi(η) (i = 1, 2, 3, · · · ) are boundary layer functions
which will rapidly decay when y is away from y = 1 and y = −1, respectively.

Substituting Eqs. (14) and (15) into Eq. (13) and equating the equal powers of ε, we have

ε0 : f ′2
0 − f0f

′′
0 = k0, (16)

ε1 : f0f
′′
1 − 2f ′

0f
′
1 + f ′′

0 f1 = α(yf ′′
0 + 2f ′

0) − M2f ′
0 + f ′′′

0 − k1, (17)

ε2 : f0f
′′
2 − 2f ′

0f
′
2 + f ′′

0 f2 = α(yf ′′
1 + 2f ′

1) − M2f ′
1 + f ′′′

1 − f1f
′′
1 + f ′2

1 − k2, (18)

...

ε−1 :
...
g 1 + f0(1)g̈1 = 0, (19)

ε0 :
...
g 2 + f0(1)g̈2 = (α − f1(1))g̈1 + f ′

0(1)τ g̈1 − g1g̈1 − 2f ′
0(1)ġ1 + g̈2

1 = 0, (20)

...

ε−1 :
...
h 1 − f0(−1)ḧ1 = 0, (21)
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ε0 :
...
h 2 − f0(−1)ḧ2 = (f1(−1) + α)ḧ1 + f ′

0(−1)ηḧ1 + h1ḧ1 − 2f ′
0(−1)ḣ1 − ḣ2

1 = 0, (22)

...

where f ′, ġ, and ḣ denote the derivatives with respect to y, τ , and η, respectively.














fi(y) = fi(1 − ετ) = fi(1) − ετf ′
i(1) +

1

2
ε2τ2f ′′

i (1) + · · · ,

fi(y) = fi(εη − 1) = fi(−1) + εηf ′
i(−1) +

1

2
ε2η2f ′′

i (−1) + · · · .

gj(τ)hj(η) is exponentially small, which is considered to be approximately zero in the rest of
the section. Substituting Eq. (14) into Eq. (12). Then, the boundary conditions to be satisfied
by fi(y), gi(τ), and hi(η) at y = 1 or τ = 0 and y = −1 or η = 0 are

f0|y=1 = 1, f0|y=−1 = 1 − α2 = a, (23)

f ′
i−1|y=1 − ġi|τ=0 = 0, i = 1, 2, · · · , (24)

f ′
i−1|y=−1 + ḣi|η=0 = 0, i = 1, 2, · · · , (25)

fi|y=1 + gi|τ=0 = 0, fi|y=−1 + hi|η=0 = 0, i = 1, 2, · · · , (26)

where a = v1

v2

, i.e., −1 < a < 0. One solution of Eq. (16) with Eq. (23) is

f0 =
1 − a

2
y +

1 + a

2
, k0 =

(a − 1)2

4
. (27)

Thus, Eq. (24) becomes

ġ1|τ=0 = f ′
0|y=1 =

1 − a

2
. (28)

The boundary layer solution of Eq. (19) satisfying Eq. (28) is

g1 =
a − 1

2
e−τ . (29)

The boundary layer solution of Eq. (21) satisfying Eq. (25) is

h1 =
a − 1

2a
eaη. (30)

Substituting Eq. (27) into Eq. (17), we have

1

2
((a − 1)y − a − 1)f ′′

1 + (1 − a)f ′
1 =

1

2
(2α − M2)(a − 1) − k1. (31)

The corresponding boundary conditions from Eq. (26) are

f1|y=1 = −g1|τ=0 =
1 − a

2
, f1|y=−1 = −h1|η=0 =

1 − a

2a
. (32)

Hence, the solution of f1 subject to Eq. (32) is

f1 =
−1

16a(a2 + a + 1)
(((a − 1)2(a2 + 2M2a − 4αa − 2a + 1) − 4a(a − 1)k1)y

3

− 3((a2 − 1)(a2 + 2M2a − 4αa − 2a + 1) − 4a(a + 1)k1)y
2

+ ((a − 1)2(3a2 − 2M2a + 4αa + 6a + 3) − 4a(a − 1)k1)y

+ ((a2 − 1)(7a2 + 6M2a − 12αa − 2a + 7) − 12a(a + 1)k1)), (33)
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where k1 is still unknown.

Substituting Eqs. (27) and (33) into Eq. (18), we can obtain the expression of f2. We find
that one term of f2 is

1

8(a − 1)3(a2 + a + 1)a
(M2 − 4α)((a2 + 2M2a − 4αa − 2a + 1)(a − 1) − 4ak1)

· ((1 − a)y + a + 1)3 lg((1 − a)y + a + 1). (34)

It is a secular term, and thus must be zero. Therefore,

k1 =
a − 1

4a
(a2 + 2M2a − 4αa − 2a + 1).

The expression of f1 becomes

f1 = −
(a − 1)2

4a
y +

1 − a2

4a
. (35)

Then, according to Eq. (24), the boundary condition for g2 becomes

ġ2|τ=0 = f ′
1|y=1 =

−(a − 1)2

4a
. (36)

Substituting Eq. (29) into Eq. (20), we have

g2 =
1 − a

8a
((a2 − a)τ2 + 2(3a2 − 2αa − 3a)τ + 6a2 − 4αa − 8a + 2)e−τ . (37)

Similarly, the solution of h2 becomes

h2 =
a − 1

8a3
(−(a3 − a2)η2 + 2(2αa + 3a − 3)aη + 2(a2 − 2αa − 4a + 3))eaη. (38)

Hence, the boundary conditions for f2 from Eq. (26) are

f2|y=1 = −g2|τ=0 =
a − 1

4a
(3a2 − 2αa − 4a + 1), (39)

f2|y=−1 = −h2|η=0 =
1 − a

4a3
(a2 − 2αa − 4a). (40)

Substituting Eqs. (27) and (35) into Eq. (18), we have

1

2
((a − 1)y − a − 1)f ′′

2 + (1 − a)f ′
2 +

(a − 1)2

16a2
(a2 + (4M2 − 8α − 2)a + 1) = k2. (41)

Then, we have

f2 =
a − 1

8a3
((3a4 − (4 + 2α)a3 + 2a2 − (4 + 2α)a + 3)y + (a2 − 1)(3a2 − (4 + 2α)a + 3)), (42)

and

k2 = −
(a − 1)2

16a3
(6a4 − (9 + 4α)a3 − (4M2 − 8α − 6)a2 − (9 + 4α)a + 6).
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The asymptotic solution for the large suction case of y ∈ [−1, 1] is

f(y) =
1 − a

2
y +

1 + a

2
+ ε

(

−
(a − 1)2

4a
y +

1 − a2

4a
+

a − 1

2
e−τ +

a − 1

2a
eaη

)

+ ε2
(a − 1

8a3
((3a4 − (4 + 2α)a3 + 2a2 − (4 + 2α)a + 3)y

+ (a2 − 1)(3a2 − (4 + 2α)a + 3)) +
1 − a

8a
((a2 − a)τ2

+ 2(3a2 − 2αa − 3a)τ + 6a2 − 4αa − 8a + 2)e−τ +
a − 1

8a3
(−(a3 − a2)η2

+ 2(2αa + 3a − 3)aη + 2(a2 − 2αa − 4a + 3))eaη
)

+ O(ε3), (43)

where

τ =
1 − y

ε
, η =

1 + y

ε
.

3.2 Asymptotic solution for large suction Reynolds number R and large Hartmann

number M

It is clear from Eq. (43) that the effect of the magnetic field on the channel flow can be
negligible. Therefore, in this section, we will consider the case of large magnetic field, which
may have a noticeable effect on the flow. When the suction Reynolds number R and the
Hartmann number M are both large and we take the same order of effects on the flow through
the channel, there may be a combined viscous suction and magnetic boundary layer at both of

the channel walls. Therefore, we assume r = −M2

R
> 0 and r ∼ O(1), and choose ε = − 1

R
as

the perturbation parameter. The method used in Subsection 3.1 can be applied to this case.
Equation (11) can be rewritten as follows:

εf ′′′ + εα(yf ′′ + 2f ′) − (ff ′′ − f ′2) + rf ′ = k, (44)

where εK(R) = k. A solution of Eq. (44) satisfying the corresponding boundary conditions in
Eq. (12) can be obtained by using the similar procedure as in the large suction case. Therefore,
fi, gi, and hi are expressed as follows:

f0 =
1 − a

2
y +

1 + a

2
, (45)

f1 = −
(a − 1)2

4a
y +

1 − a2

4a
, (46)

f2 =
a − 1

8a3
((3a4 + (2r − 2α − 4)a3 + 2a2 − (4 + 2α)a − 2r + 3)y

+ 3a4 + (2r − 2α − 4)a3 + (4 + 2α)a + 2r − 3), (47)

g1 =
a − 1

2
e−τ , (48)

h1 =
a − 1

2a
eaη, (49)

g2 =
a − 1

8a
(−(a2 − a)τ2 − 2(3a2 + (2r − 2α − 3)a)τ

− 2(3a2 + 2(r − α − 2)a + 1))e−τ , (50)
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h2 =
a − 1

8a3
(−(a3 − a2)η2 + 2((3 + 2α)a2 + (2r − 3)a)η

+ 2(a2 − (4 + 2α)a − 2r + 3))eaη. (51)

Then, the asymptotic solution for this case is

f(y) =
1 − a

2
y +

1 + a

2
+ ε

(

−
(a − 1)2

4a
y +

1 − a2

4a
+

a − 1

2
e−τ +

a − 1

2a
eaη

)

+ ε2
(a − 1

8a3
((3a4 + (2r − 2α − 4)a3 + 2a2 − (4 + 2α)a − 2r + 3)y

+ 3a4 + (2r − 2α − 4)a3 + (4 + 2α)a + 2r − 3)

+
a − 1

8a
(−(a2 − a)τ2 − 2(3a2 + (2r − 2α − 3)a)τ − 2(3a2 + 2(r − α − 2)a + 1))e−τ

+
a − 1

8a3
(−(a3 − a2)η2 + 2((3 + 2α)a2 + (2r − 3)a)η + 2(a2 − (4 + 2α)a − 2r

+ 3))eaη
)

+ O(ε3), (52)

where

τ =
1 − y

ε
, η =

1 + y

ε
, −1 < a < 0.

From Eq. (52), we know that the large magnetic field has a noticeable effect on the flow.

4 Asymptotic solutions for the mixed cases

For the asymmetric model, we will consider the case where injection and suction are mixed
at the upper and lower walls. The mixed cases are either mixed injection or mixed suction for
the porous channel flow considered by Terrill and Shrestha[21]. The flow governed by Eq. (11)
is of mixed injection for positive v1 and v2, while is of mixed suction for negative v1 and v2.
Both of the asymptotic expressions are presented in the subsequent subsections, respectively.
4.1 Asymptotic solution for the mixed injection case

For the mixed injection case, it is assumed that v2 > v1 > 0, i.e., 0 < a 6 1. Then, the
equation, satisfying Eq. (12), can be rewritten as follows:

εf ′′′ + εα(yf ′′ + 2f ′) + (ff ′′ − f ′2) − εM2f ′ = k, (53)

where ε = 1
R

> 0 can be treated as a small parameter, and k is an arbitrary constant.
The wall at y = −1 is with suction, which may produce a boundary layer, while the other

wall at y = 1 is with injection. One correction term may have to be introduced due to the
presence of the boundary layer at y = −1. Thus, f(y) and k are expanded as follows:

f(y) = f0(y) + ε(f1(y) + h1(η)) + ε2(f2(y) + h2(η)) + · · · , (54)

k = k0 + εk1 + εk2 + · · · , (55)

where η = 1+y

ε
is the stretching transformation near y = −1, and hi(η) (i = 1, 2, · · · ) are

boundary layer functions (rapidly decay when y is away from −1). Substitute Eq. (54) into
Eq. (12). Then, the boundary conditions become

f0|y=1 = 1, f ′
0|y=1 = 0, f0|y=−1 = 1 − α2 = a, (56)

f ′
i−1|y=−1 + ḣi|η=0 = 0, i = 1, 2, · · · , (57)
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fi|y=1 = 0, f ′
i |y=1 = 0, fi|y=−1 + hi|η=0 = 0, i = 1, 2, · · · . (58)

Substituting Eqs. (54) and (55) into Eq. (53), we have

f0f
′′
0 − f ′2

0 = k0 (59)

subject to Eq. (56) at O(1).
It can be easily verified that the leading order solution is f0 = cos(by−b), which is a periodic

function. Then, we have

b =
1

2
(arccosa + 2nπ), k0 = −b2 = −

1

4
(arccosa + 2nπ)2, n = 0, 1, 2 · · · ,

from which we can obtain many solutions of Eq. (59). f ′
0, which is proportional to the streamwise

velocity u, does not change its sign when n = 0. However, f ′
0 does change its sign at least three

times when n = 1, i.e., the streamwise fluid flow direction will change at least three times.
f ′
0 does change its sign at least five times when n > 2. These phenomena may not occur

physically. The laboratory experiment on a porous pipe without expansion or contraction
has been conducted by Wageman and Guevara[26], and the zeroth-order asymptotic solution

f0 = (−1)n

B
sin (2n+1)πX

2 (n = 0, 1, 2, · · · ) for the injection case is obtained. The only solution

that has been experimentally observed is in Ref. [26], where n = 0. Meanwhile, Proudman[19]

pointed out that f could have at most one zero, and it was common for any combination of
the signs v1 and v2 for the reduced solution. However, there is at least two zeros when n > 0.
Therefore, there must be n = 0.

Now, we consider f0 = cos(by − b) as the leading order solution. When the terms of O(ε−1)
are collected, the equation for h1 becomes

...
h 1 + f0(−1)ḧ1 = 0 (60)

and satisfies Eq. (57), i.e.,
ḣ1|η=0 = −f ′

0|y=−1 = −b sin(2b). (61)

Hence, the solution h1 is

h1 =
b

a
sin(2b)e−aη. (62)

When the terms of O(ε) are collected, the differential equation for f1 becomes

f0f
′′
1 − 2f ′

0f
′
1 + f ′′

0 f1 = −f ′′′
0 − α(yf ′′

0 + 2f ′
0) + M2f ′

0 + k1. (63)

The boundary conditions in Eq. (58) are

f1|y=1 = 0, f ′
1|y=1 = 0, f1|y=−1 = −h1|η=0 = −

b

a
sin(2b). (64)

To simplify the equation, let z = by − b. Then, Eq. (63) can be rewritten as follows:

b cos zf ′′
1 + 2b sin zf ′

1 − b cos zf1 = (b + z)α cos z + (2α − M2 − b2) sin z + λ, (65)

where ′ denotes the derivative with respect to z, and λ = k1

b
. The boundary conditions become

f1|z=0 = 0, f ′
1|z=0 = 0, f1|z=−2b = −

b

a
sin(2b). (66)

To construct the solution of Eq. (65), we start with the corresponding homogeneous equation
as follows:

b cos zf ′′
1h + 2b sin zf ′

1h − b cos zf1h = 0. (67)
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We can easily obtain its solution as follows:

f1h = P1 sin z + P0(z sin z + cos z), (68)

where P0 and P1 are two arbitrary constants. Applying the method of variation of parameters,
we can find the solution of Eq. (68) in terms of

f1 = P1(z) sin z + P0(z)(z sin z + cos z). (69)

Through the standard process, we have

P0 =
1

2b
((b2 + M2 − 4α)(ln(1 − sin z) − ln cos z) + (b2 + M2 − 2α) sec2 z sin z

− λ − 2α(b + z) cos z + b2) + n0, (70)

P1 =
1

2b
(−2(b2 + M2 − 2α − bαz) sec z + λz sec2 z + λ tan z) + Q(z) + n1, (71)

where

Q(z) =
α

b
z2 sec z +

1

b

∫ z

0

((b2 + M2 + α)φ sec φ − (b2 + M2 − 2α)φ sec3 φ)dφ, (72)

and n0 and n1 are constants to be determined.
Substituting Eqs. (70) and (71) into Eq. (69), we have

f1 = − α −
α

b
z + (Q(z) + n1) sin z + n0z sin z + n0 cos z −

b2 + M2 − 2α

2b
tan z −

α

b
tan z

+
λ

2b
sin z tan z −

λ

2b
sec z +

b2 + M2 − 2α

2b
ztan2z +

b2 + M2 − 4α

2b
(ln(1 − sin z)

− ln cos z)(z sin z + cos z). (73)

According to Eq. (66) and taking account of Q(0) = 0, we have

n0 = α +
λ

2b
, n1 =

b2 + M2 − 2α

b
, (74)

λ =
1

2a(b sin(2b) + cos (2b))
(2abα + (2b2 − 2ab2 − 2aM2 + 4aα − 4ab2α

− 2abQ(−2b)) sin(2b) − 2abα cos (2b) + (ab2 + aM2 − 2aα + 8ab2α) tan (2b)

+ (−2ab3 − 2abM2 + 4abα) tan2 (2b)

+ a(b2 + M2 − 4α)(cos (2b) + 2b sin(2b))(ln(1 + sin(2b)) − ln cos (2b))). (75)

Hence, the solution of Eq. (63) is

f1 = − α −
α

b
z +

(

Q(z) +
b2 + M2 − 2α

b

)

sin z +
(

α +
λ

2b

)

z sin z +
(

α +
λ

2b

)

cos z

−
b2 + M2 − 2α + 2αz2

2b
tan z +

λ

2b
sin z tan z −

λ

2b
sec z +

b2 + M2 − 2α

2b
ztan2z

+
b2 + M2 − 4α

2b
(ln(1 − sin z) − ln cos z)(z sin z + cos z), (76)
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where λ is given by Eq. (75). An asymptotic solution for the mixed injection for v2 > v1 > 0,
i.e., 0 < a 6 1, is

f(y) = cos z + ε
(

− α −
α

b
z +

(

Q(z) +
b2 + M2 − 2α

b

)

sin z +
(

α +
λ

2b

)

z sin z

+
(

α +
λ

2b

)

cos z −
b2 + M2 − 2α + 2αz2

2b
tan z +

λ

2b
sin z tan z

−
λ

2b
sec z +

b2 + M2 − 2α

2b
ztan2z +

b2 + M2 − 4α

2b
(ln(1 − sin z) − ln cos z)

· (z sin z + cos z) +
b

a
sin(2b)e−aη

)

+ O(ε2), (77)

where

η =
1 + y

ε
, z = by − b.

Remark 1 We remark that v1 > v2 > 0, i.e., a > 1. We can have the solution of the
format f0 = cosh(dy − d), where

d = ±
1

2
arccosha, k0 = d2 =

1

4
(arccosha)2.

Since coshx is an even function, the solutions for d = 1
2arccosha and d = − 1

2arccosha are the
same, and it is also means that there is only one solution of Eq. (59).
4.2 Asymptotic solution for the mixed suction case

For the mixed suction case, it is assumed that v2 6 v1 < 0, i.e., 0 < a 6 1. The equation is
the same as Eq. (13), which satisfies Eq. (12). Correction terms may have to be introduced due
to a possible boundary layer near y = 1. Thus, f(y) and k are expanded as follows:

f(y) = f0(y) + ε(f1(y) + g1(τ)) + ε2(f2(y) + g2(τ)) + · · · , (78)

k = k0 + εk1 + εk2 + · · · , (79)

where ε = − 1
R

> 0, τ = 1−y
ε

is the stretching transformation near y = 1, and gi(τ) (i =
1, 2, · · · ) are boundary layer functions (rapidly decay when y is away from 1). The corresponding
boundary conditions become

f0|y=1 = 1, f0|y=−1 = 1 − α2 = a, f ′
0|y=−1 = 0, (80)

f ′
i−1|y=1 − ġi|τ=0 = 0, i = 1, 2, · · · , (81)

fi|y=−1 = 0, f ′
i |y=−1 = 0, fi|y=1 + gi|τ=0 = 0, i = 1, 2, · · · . (82)

Substituting Eqs. (78) and (79) into Eq. (13) and collecting the same power of ε, we have

ε0 : f ′2
0 − f0f

′′
0 = k0, (83)

ε−1 :
...
g 1 + g̈1 = 0, (84)

ε1 : f0f
′′
1 − 2f ′

0f
′
1 + f ′′

0 f1 = α(yf ′′
0 − 2f ′

0) − M2f ′
0 + f ′′′

0 − k1, (85)

...
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Equations (83)–(85) subject to the boundary conditions in Eqs. (80)–(82), respectively. It can
be easily obtained that the leading order solution is

f0 = a cosh(by + b), (86)

where

b =
1

2
arccosh

1

a
, k0 = −(ab)2 = −

1

4
a2

(

arccosh
1

a

)2

.

Applying the similar method in the mixed injection case and solving Eqs. (84) and (85), we
have

g1 = −ab sinh (2b)e−τ , (87)

f1(z) = −α +
α

b
z −

(

S(z) +
M2 − b2 − 2α

b

)

sinh z −
µ

2b
cosh z

−
b2 − M2 + 2α + 2αz2

2b
tanh z −

b2 − M2 + 2α

2b
z tanh2 z

−
z sinh z − cosh z

2b
(2bα + µ − 2(b2 − M2 + 4α) arctan(tanh(z/2))), (88)

where

S(z) =
1

b

∫ z

0

(−αφsechφ + αφ2sechφ tanhφ + (b2 − M2 + 2α)φsech φ tanh2 φ)dφ, (89)

µ = b(1 − a − 2α) − S(2b) −
M2 − 2α

b
+

M2 − b2 − 2α − 8b2α

2b cosh (2b)

+ α coth (2b) + (M2 − b2 − 2α)
tanh (2b)

cosh (2b)
+

α

2 sinh b cosh (2b)

+
M2 − b2 − 4α

b
arctan(tanh b)(coth (2b) − 2b). (90)

An asymptotic solution of mixed suction for v2 6 v1 < 0, i.e., 0 < a 6 1, is

f(y) = cosh z + ε
(

− α +
α

b
z −

(

S(z) +
M2 − b2 − 2α

b

)

sinh z −
µ

2b
cosh z

−
b2 − M2 + 2α + 2αz2

2b
tanh z −

b2 − M2 + 2α

2b
z tanh2 z

−
z sinh z − cosh z

2b
(2bα + µ − 2(b2 − M2 + 4α)arctan tanh(z/2))

− abe−τ sinh(2b)
)

+ O(ε2), (91)

where τ = 1−y

ε
, and z = by + b.

Remark 2 we remark that v1 6 v2 < 0, i.e., a > 1, a > 1, and f0 = a cos(dy + d) is a
leading order solution, where

b =
1

2

(

arccos
1

a
+ 2nπ

)

, k0 = (ab)2 =
1

4
a2

(

arccos
1

a
+ 2nπ

)2

.
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5 Asymptotic solution for the case of small Reynolds R and small expan-

sion ratio α

For the small injection or suction and small expansion ratio case, it is reasonable to use
the method of regular perturbation expansion to construct the asymptotic solution. One, thus,
may treat R as a perturbation parameter. The solution may be expanded as follows:

f = f0 + Rf1 + R2f2 + · · · . (92)

Differentiating Eq. (11) with respect to y, we have

f ′′′′ + α(yf ′′′ + 3f ′′) + R(f ′′′f − f ′′f ′) − M2f ′′ = 0, (93)

which satisfies Eq. (12). Substituting Eq. (92) into Eq. (93) and equating like powers of R, we
have

f ′′′′
0 + α(yf ′′′

0 + 3f ′′
0 ) − M2f ′′

0 = 0, (94)

f ′′′′
1 + α(yf ′′′

1 + 3f ′′
1 ) − M2f ′′

1 + f ′′′
0 f0 − f ′′

0 f ′
0 = 0. (95)

The corresponding boundary conditions become

f0|y=1 = 1, f ′
0|y=1 = 0, f0|y=−1 = 1 − α2, f ′

0|y=−1 = 0, (96)

f1|y=1 = 0, f ′
1|y=1 = 0, f1|y=−1 = 0, f ′

1|y=−1 = 0. (97)

We consider the case where α is also small, and take it as the secondary perturbation parameter.
Then, f0 and f1 can be further expanded as follows:

f0 = f00 + αf01 + O(α2), (98)

f1 = f10 + αf11 + O(α2). (99)

Substituting Eq. (98) into Eq. (94) and collecting like powers of α, we have

f ′′′′
00 − M2f ′′

00 = 0, (100)

f ′′′′
01 − M2f ′′

01 + yf ′′′
00 + 3f ′′

00 = 0 (101)

with the boundary conditions

f00|y=1 = 1, f ′
00|y=1 = 0, f00|y=−1 = 1 − α2, f ′

00|y=−1 = 0, (102)

f01|y=1 = 0, f ′
01|y=1 = 0, f01|y=−1 = 0, f ′

01|y=−1 = 0. (103)

Thus, we have

f00 =
α2(sinh(My) − yM coshM)

2(sinhM − M cosh M)
+

2 − α2

2
, (104)

f01 =
D

8M
(y2(M coshM − sinhM)M sinh(My) − y((M coshM − sinhM) cosh(My)

+ coshM sinhM + M cosh(2M) − 2M) − (M coshM + 2 sinhM)M sinh(My)), (105)

where D = α2

(M cosh M−sinh M)2 .
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Substituting Eqs. (99) and (98) into Eq. (95) and equating equal powers of α, we have

f ′′′′
10 − M2f ′′

10 + f ′′′
00f00 − f ′′

00f
′
00 = 0 (106)

with the boundary condition

f10|y=1 = 0, f ′
10|y=1 = 0, f10|y=−1 = 0, f ′

10|y=−1 = 0. (107)

The solution of f10 is

f10 = Gy2(2α2M
2 sinh(2M) sinh(My)(M coshM − sinhM))

+ MGy(8(α2 − 2)(M coshM − sinhM)2 sinh(My)

+ 28α2 coshM(M coshM − sinhM) cosh(My) + α2(14 sinh(2M) coshM

− 2M cosh(3M) − 26M coshM)) + 2G(4(α2 − 2) sinh2 M(M cosh2 M

− coshM(M cosh(My) + sinhM) + sinhM(cosh(My) + M sinhM))

− M2 sinh(2M)((α2 − 2)(2 coshM cosh(My) + cosh(2M))

− 3α2(2 sinhM sinh(My) + 1) + 6)

+ 2M3 cosh2 M(2(α2 − 2)(coshM cosh(My) − 1)

− α2 sinhM sinh(My))), (108)

where

G =
α2

64M sinhM(M coshM − sinhM)3
.

Finally, the solution becomes

f(y) =
α2

2p
(sinh(My) − yM coshM) +

2 − α2

2
+

αα2

8Mp2
(y2p − sinhM)M sinh(My)

− y(p cosh(My) + coshM sinhM + M cosh (2M) − 2M)

− (M coshM + 2 sinhM)M sinh(My))

+
Rα2

64p3M sinhM
(y2(2α2M

2 sinh(2M) sinh(My)p)

+ My(8(α2 − 2)p2 sinh(My) + 28α2p coshM cosh(My)

+ α2(14 sinh(2M) coshM − 2M cosh(3M) − 26M coshM))

+ 2(4(α2 − 2) sinh2 M(M cosh2 M − coshM(M cosh(My) + sinhM)

+ sinhM(cosh(My) + M sinhM)) − M2 sinh(2M)((α2 − 2)(2 coshM cosh(My)

+ cosh(2M)) − 3α2(2 sinhM sinh(My) + 1) + 6)

+ 2M3 cosh2 M(2(α2 − 2)(coshM cosh(My) − 1) − α2 sinhM sinh(My)))), (109)

where

p = M coshM − sinhM.
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6 Comparison of the asymptotic and numerical solutions

Terrill and Shrestha[20] pointed out that the comparison of f ′′(1) was the most effective way.
Hence, in this section, we will compare the asymptotic and numerical results of f ′′(−1) and
f ′′(1) proportional to the skin-friction at the walls. The numerical solutions for Eqs. (11) and
(12) can be obtained by a MATLAB boundary layer problem solver BVP4C.

From Table 1, we can see that the analytical results agree well with the numerical results
for arbitrary constants α2 and α for M2/R ∼ O(ε) in the large suction case. Nevertheless, it
is clear from the last four lines of Table 1 that the asymptotic results deteriorate when M2

becomes of the same order as that of the suction Reynolds number. Hence, we need to use the
asymptotic solution for the case of M2/R ∼ O(1). We find that the large magnetic field has a
noticeable effect on the solution because of the parameter r existing in ε2. As shown in Table
2, when the solution (52) is used, the accuracy is largely improved compared with Table 2 for
large M .

Table 1 Comparison of f ′′(−1) and f ′′(1) for large suction R

M α2 α R
f ′′(−1) f ′′(1)

Eq. (43) Numerical Eq. (43) Numerical

1.0 1.87 −1.5 −50 40.939 5 40.866 3 −47.408 9 −47.406 0

1.0 1.95 −2.0 −67 62.958 1 62.952 6 −66.374 4 −66.382 5

1.1 1.73 −3.0 −88 56.860 9 56.874 6 −78.243 5 −78.299 7

3.5 1.81 2.0 −90 62.961 2 62.906 7 −79.013 1 −79.039 8

6.5 1.50 3.5 −99 32.812 5 32.987 1 −71.625 0 −71.958 7

3.8 1.77 4.0 −110 70.168 4 70.058 3 −93.260 7 −93.264 1

2.5 1.60 −8.0 −135 69.706 7 69.933 6 −114.187 0 −114.316 1

6.0 1.50 3.0 −150 52.312 5 52.382 6 −110.250 0 −110.442 6

20.0 1.70 5.0 −150 83.658 2 86.894 3 −122.837 1 −125.110 2

30.0 1.80 −7.0 −150 113.085 0 119.495 9 −140.693 0 −145.880 2

20.0 1.70 5.0 −175 98.533 2 101.291 9 −144.087 1 −146.027 7

30.0 1.80 −7.0 −175 131.085 0 136.665 9 −163.193 0 −167.693 5

Table 2 Comparison of f ′′(−1) and f ′′(1) for large suction R and M

M α2 α R
f ′′(−1) f ′′(1)

Eq. (52) Numerical Eq. (52) Numerical

20 1.7 5 −150 86.896 3 86.894 3 −125.103 8 −125.110 2

20 1.7 5 −175 101.308 7 101.291 9 −146.030 0 −146.027 7

30 1.8 −7 −150 119.835 0 119.495 9 −146.092 5 −145.880 2

30 1.8 −7 −175 136.870 7 136.665 9 −167.821 1 −167.693 5

20 1.7 5 −213 123.423 6 123.390 4 −177.983 4 −177.975 0

30 1.8 −7 −213 188.936 5 188.869 1 −208.964 9 −208.911 4

From Tables 3 and 4, we know that the asymptotic solutions agree well with the numerical
solutions in the mixed cases. Meanwhile, the skin-friction increases when R increases.

At this juncture, it is useful to note that if there is no magnetic field, i.e., M = 0, and the
physic model is symmetric, i.e., α2 = 2, the solution of small R and α can be reduced to the
solution given by Majdalani et al.[9]. Furthermore, it is clear from Table 5 that the asymptotic
results have a good match to the numerical results, and the accuracy increases when R and α
decrease.
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Table 3 Comparisons of f ′′(−1) and f ′′(1) for mixed injection

M α2 α R
f ′′(−1) f ′′(1)

Eq. (77) Numerical Eq. (77) Numerical

2 0.2 −3 50 7.669 3 7.835 2 −0.124 4 −0.125 6

2 0.2 −3 70 10.749 5 10.915 7 −0.118 4 −0.119 0

2 0.2 −3 90 13.833 5 14.000 0 −0.115 1 −0.115 5

2 0.2 −3 110 16.919 3 17.086 0 −0.112 9 −0.113 2

2 0.2 −3 130 20.006 0 20.172 9 −0.111 5 −0.111 7

2 0.2 −3 150 23.093 3 23.260 3 −0.110 4 −0.110 6

3 0.1 2 50 4.380 8 4.228 1 −0.054 1 −0.054 1

3 0.1 2 70 6.149 3 5.991 2 −0.053 1 −0.053 1

3 0.1 2 90 7.918 1 7.757 0 −0.052 6 −0.052 6

3 0.1 2 110 9.687 2 9.524 2 −0.052 3 −0.052 3

3 0.1 2 130 11.456 4 11.292 0 −0.052 1 −0.052 0

3 0.1 2 150 13.225 6 13.060 2 −0.051 9 −0.051 9

Table 4 Comparisons of f ′′(−1) and f ′′(1) for mixed suction

M α2 α R
f ′′(−1) f ′′(1)

Eq. (91) Numerical Eq. (91) Numerical

1 0.06 −3.7 −15 0.048 5 0.052 7 −0.910 7 −0.934 2

2 0.06 −3.7 −15 0.052 7 0.058 3 −0.919 4 −0.901 8

1 0.13 1.2 −19 0.059 9 0.060 6 −2.427 5 −2.533 2

2 0.13 1.2 −28 0.066 2 0.066 5 −3.653 2 −3.600 1

2 0.24 2.8 −39 0.105 6 0.106 5 −9.641 0 −9.593 8

2 0.20 −1.5 −50 0.094 9 0.095 5 −8.702 1 −8.534 8

1 0.36 0.8 −55 0.163 2 0.163 4 −21.197 4 −21.368 7

2 0.54 1.7 −67 0.225 5 0.225 9 −41.463 1 −41.112 9

2 0.08 −2.1 −75 0.043 9 0.044 0 −6.050 2 −5.998 4

1 0.49 0.9 −89 0.209 5 0.209 7 −49.086 4 −49.381 1

Table 5 Comparisons of f ′′(−1) and f ′′(1) for small R and α

M α2 α R
f ′′(−1) f ′′(1)

Eq. (109) Numerical Eq. (109) Numerical

3 1.9 0.01 0.01 4.234 9 4.234 9 −4.234 2 −4.234 2

3 1.8 0.02 0.03 4.003 5 4.003 5 −3.999 6 −3.999 6

5 1.5 0.04 0.06 4.663 6 4.663 6 −4.649 5 −4.649 7

7 1.3 0.10 0.09 5.266 5 5.266 7 −5.242 6 −5.243 0

9 1.0 0.15 0.19 5.026 2 5.026 3 −4.972 7 −4.973 5

12 0.8 0.22 0.28 5.204 2 5.204 3 −5.130 9 −5.131 9

15 0.6 −0.35 −0.30 4.857 5 4.857 6 −4.925 0 −4.926 0

20 0.4 −0.40 0.29 4.272 6 4.273 0 −4.223 8 −4.223 8

13 0.3 0.50 −0.38 2.048 2 2.049 0 −2.100 7 −2.100 7

8 0.1 −0.30 0.40 0.476 5 0.476 8 −0.454 8 −0.454 8

8 0.1 0.50 0.60 0.458 0 0.458 1 −0.425 5 −0.425 4
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7 Conclusions

In this paper, the similarity solutions of the asymmetric channel flow with porous retractable
walls and a transverse magnetic field are constructed. Firstly, one asymptotic solution with the
linear leading order is obtained for the large suction case. It is found that the skin-friction near
the walls increases when the magnetic field intensity increases. Secondly, the asymptotic solu-
tions are obtained for the flow in a channel, where one wall is with injection and the other wall
is with suction. All the above asymptotic solutions are constructed for the most difficult large
Reynolds number cases. Finally, one asymptotic solution is obtained by the two-parameter
perturbation method when the wall contraction or expansion is weak and the injection or suc-
tion is small. All asymptotic solutions are verified by the numerical solutions obtained by the
MATLAB boundary value problem solver BVP4C.
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