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a b s t r a c t

This paper is concerned with multiple solutions of a singular nonlinear boundary value
problem (BVP) on the interval [0, 1], which arises in a study of the laminar flow in a porous
pipe with an expanding or contracting wall. For the singular nonlinear BVP, the correct
boundary conditions are derived to guarantee that its linearization has a unique smooth
solution. Then a numerical technique is proposed to find all possiblemultiple solutions. For
the suction driven pipe flow with the expanding wall (e.g. α = 2), we find a new solution
numerically and classify it as a type VI solution. The computed results agreewell withwhat
can be obtained by the bifurcation package AUTO. In addition, we also construct asymptotic
solutions for a few cases of parameters, which agree well with numerical solutions. These
serve as validations of our numerical results. Thus we believe that the numerical technique
designed in the paper is reliable, and may be further applied to solve a variety of nonlinear
equations that arise from other flow problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The laminar flow in a porous circular pipe or channel with an expanding or contracting wall has received considerable
attention in recent years due to their relevance to a number of biological and engineering models, such as the transport
of biological fluids through contracting or expanding vessels and the air circulation in the respiratory system. The earliest
workers on the unsteady flow across an expandingwall can probably be traced back to Uchida andAoki [1], inwhich the flow
equations in a pipe are reduced to a single fourth-order nonlinear ordinary differential equation with the wall expansion
ratio as a parameter. In order to simulate the laminar flow field in cylindrical solid rocket motors, Goto and Uchida [2]
analyzed the laminar incompressible flow in a semi-infinite porous pipe whose radius varies with time. Following the route
of this investigation, a variety of methods have been used to study this problem. For example, Boutros et al. [3,4] applied a
Lie-group method to the equations of motion to determine symmetry reductions of partial differential equations. The
resulting fourth-order nonlinear differential equation is then solvedusing small-parameter perturbations, and the results are
compared with numerical solutions using shooting method. Asghar et al. [5] and Dinarvand and Rashidi [6] also discussed
the flow in a slowly deforming channel with weak permeability using homotopy analysis method (HAM) and Adomian
decomposition method (AMD), respectively.
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Besides the above mentioned results, multiple solutions are also found for governing equations in the porous pipe
or channel with stationary walls. For example, Robinson [7] considered the inclusion of exponentially small terms in an
asymptotic series to find two of the solutions analytically for the flow in a porous channel. Using the HAM, Xu et al. [8]
recently investigated themultiple solutions of the flow in aporous channelwith expanding or contractingwalls and explored
some ranges of the control parameters. However, little work is found in literature on multiple solutions of the laminar flow
in a pipe with an expanding or contracting wall in a full range of Reynolds numbers. The main purpose of this paper is to
findmultiple solutions corresponding to governing equations. Since the transformation of governing equations to a singular
nonlinear boundary value problem (BVP) can be found in previous literature (e.g. [9]), for the sake of simplicity, we only
present the resulting BVP of the form

ηf ′′′
+ f ′′

+
α

2
(ηf ′′

+ f ′) +
Re
2

(f ′′f − f ′2) = k, (1)

where ′ denotes the derivative with respect to η, α and Re are wall expansion ratio and cross-flow Reynolds number,
respectively, and k is an integration constant. Another form of Eq. (1) is often used to study its solution. It is obtained through
a simple differentiation:

ηf ′′′′
+ 2f ′′′

+
α

2
(ηf ′′′

+ 2f ′′) +
Re
2

(f ′′′f − f ′′f ′) = 0. (2)

The corresponding boundary conditions become

f ′(1) = 0, f (1) = 1, f (0) = 0, lim
η→0

η
1
2 f ′′(η) = 0. (3)

Noting that when the wall is stationary (i.e. α = 0), Terrill and Thomas [10] have presented the multiple solutions using
a numerical technique, in which the boundary value problem is rewritten as an initial value problem at the left endpoint,
and the initial values are updated to meet the boundary conditions at the other endpoint. This process is similar to that of
shooting method. To overcome the singularity at η = 0, a Taylor expansion is used in the neighborhood of η = 0 and a
Runge–Kutta method is then applied thereafter. Using the technique, Shankararaman and Liu [11] also considered the effect
of the slip on existence and uniqueness of similarity solutions in a porous pipewith stationarywalls. However for the laminar
flow in a porous pipe with an expanding or contracting wall (i.e. α ≠ 0), if we continue to use their technique, the BVP
(i.e. (2) and (3))may not be easy to solve due to the singularity at η = 0 andmultiple parameters (i.e.α and Re). Furthermore,
we aim to find all possible multiple solutions for the full range of parameters. This largely increases the difficulty of the
computation. So, to obtain multiple solutions of (2) and (3), it is necessary to design a new numerical technique.

In the current paper, we mainly focus on solving the problem (2) and (3) for multiple solutions. Since Eq. (2) has the
singularity at η = 0, a solution to its linearization may blow up (see Section 2 for more details). Therefore, before solving
it, we first analyze the singularity. There also exist plenty of papers dealing with the smoothness properties of solutions
for singular BVPs. The problem (2) and (3) is a typical BVP with a singularity of the first kind [12]. Such BVPs often arise in
numerous applications in natural sciences and engineering, e.g. when a partial differential equation (PDE) is reduced to an
ordinary differential equation (ODE) by the cylindrical or spherical symmetry. Since the singular BVP is not evaluated easily
at the singular point, the studies on it have become a recurring topic in the field of numerical calculation (e.g. [12–18]),
where their attention mainly focus on the existence, uniqueness and smoothness of solutions. In particular, the structure
of the boundary conditions which are necessary and sufficient for the linearization of a singular nonlinear BVP to have a
reasonable smoothness of the solution on a closed interval including the singular point is of special interest. Other studies
on the convergence properties of several finite difference, collocation and Galerkin schemes for singular BVPs may also be
found in e.g. [12,16,19–22] and in a nice bibliography on solving singular BVP numerically [23].

The rest of the paper is organized as follows. In Section 2, we will focus first on setting appropriate boundary conditions
such that the linearization of the problem (2) and (3) can have a reasonably smooth solution. To obtain all possible multiple
solutions, we propose a technique in Section 3.1, where the problem (2) and (3) is converted into an initial value problem
(IVP). The resulting IVP also has the singularity at η = 0. Therefore, in Section 3.2, according to a few results given in
[24–28], we analyze the smoothness of the solution of the singular IVP near the singular point, and thus ODE solvers given in
MATLAB can be used to solve it. Numerical results andmultiple solutions are presented in Section 4. In order to further verify
the numerical results, asymptotic solutions for some ranges of parameters are constructed by a few suitable perturbation
methods and asymptotic results are compared with the numerical ones in Section 5. Finally, Section 6 concludes the paper.

2. The BVP with a singularity of the first kind

The problem we consider is singular and formulated as a two-point BVP, where correct boundary conditions can result
in a well-posed BVP whose linearization has a unique smooth solution. This property is crucial when solving a nonlinear
BVP numerically using the Newton method. So the following question arises: What boundary conditions may be derived to
guarantee that the linearization of the problem (i.e. (2) and (3)) is to have a unique smooth solution in the interval [0, 1]?
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Before we do such an analysis, the notation Cp
q [0, 1] is introduced. It is the space whose elements have the form

x(t) = (x1(t), x2(t), . . . , xq(t))T , 0 ≤ t ≤ 1, (4)

where xi(t), i = 1, 2, . . . , q, are p times continuously differentiable functions on [0, 1], and Cp
q (0, 1] is defined in a

similar way. For simplicity, we will remove the subscript q in the subsequent analysis and simply denote C[0, 1] =

C0
[0, 1], C(0, 1] = C0(0, 1].
In general, for a BVP with a singularity of the first kind, its standard form is formulated as:

y′
= Sy/η + g(η, y), 0 < η ≤ 1, y ∈ C[0, 1] ∩ C1(0, 1], (5)

b(y(0), y(1)) = 0. (6)

Here, y and g are vector-valued functions of dimension n, b is a vector-valued function of dimension m ≤ n. S is a constant
n × n matrix. To write (2) and (3) into the standard form (5) and (6), we introduce the following new variables:

y1 =
f
η
, y2 = f ′, y3 = f ′′, y4 = ηf ′′′, (7)

and collect them as a vector variable y = (y1 y2 y3 y4)T . Note that f (0) = 0, thus y1 is well defined. Then we can write
Eq. (2) as Eq. (5), where

S =

−1 1 0 0
0 0 0 0
0 0 0 1
0 0 0 −1

 (8)

and

g(η, y) =


0 y3 0 −

α

2
(y4 + 2y3) −

Re
2

(y1y4 − y2y3)
T

. (9)

The problem (5) and (6) has been investigated by de Hoog and Weiss [16]. They have not only developed a canonical
form for such BVPs, but also established a Fredholm theory for linear problems in this canonical form. Further, its analysis
on more general problems can be found in the literature [12]. We will follow their technique in the subsequent analysis. It
is assumed that the nonlinear two-point BVP (i.e. (2) and (3)) has an isolated solution y(η). This means that the linearized
problem

φ′(η) = Sφ(η)/η + A(η)φ(η), 0 < η ≤ 1, (10)

B0φ(0) + B1φ(1) = 0, (11)

where

A(η) =
∂g(η, y(η))

∂y
; Bi =

∂b(y(0), y(1))
∂y(i)

, i = 0, 1; (12)

has only the trivial solution. We note that ∂g
∂y is smooth, which indicates that the eigenvalues of S play a major role in posing

the correct boundary conditions [16]. Before deriving the correct boundary conditions, we introduce some notations that
will be used in the subsequent analysis.

Let X0 and X+ be the eigenspaces of S corresponding to the eigenvalue zero and the eigenvalues with positive real part,
respectively, R and M be the projection matrices onto X0 and X+, respectively, and define

Q = I − R − M, (13)

where I is an identity matrix. According to Lemmas 3.6, 3.7 and Theorem 3.1 in [16], the correct boundary conditions which
are necessary and sufficient for the problem (10) and (11) to have a unique solution φ ≡ 0 are Qφ(0) = 0, Mφ(0) = 0 and
rank[B0R, B1] = 2. Here the projection matrices Q ,M and R are as follows:

Q =


1
2

−
1
2

0 0

−
1
2

1
2

0 0

0 0 0 0
0 0 0 1

 , M = 0, R =


1
2

1
2

0 0

1
2

1
2

0 0

0 0 1 0
0 0 0 0

 . (14)

It is easily verified that the additional boundary conditions Qφ(0) = 0 and Mφ(0) = 0 required for the correct boundary
conditions are

y1(0) − y2(0) = 0, y4(0) = 0. (15)
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On the other hand, according to (12), we can easily obtain

B0 =

1 −1 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , B1 =

0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0

 , (16)

which verifies rank[B0R, B1] = 2.
As an aside, since the problem results from the actual flow model in a cylindrical pipe, the flow variables at the center

of the pipe (i.e. η = 0) should be smooth from the physical point of view (even if the BVP (2) and (3) has the singularity at
η = 0 due to the cylindrical symmetry [9]). Thus, we assume that the solutions of the BVP (2) and (3) are well-behaved or
smooth at the origin (i.e. η = 0). Moreover, the condition Sy(0) = 0 is necessary for y to have a bounded limit for η → 0.
In fact, it is not difficult to calculate

Sy(0) =

−1 1 0 0
0 0 0 0
0 0 0 1
0 0 0 −1


y1
y2
y3
y4


η=0

=

y2 − y1
0
y4

−y4


η=0

=


f ′

−
1
η
f

0
ηf ′′′

−ηf ′′′


η=0

. (17)

Since we look only for smooth solutions as mentioned earlier, we may have ηf ′′′(η) = 0 at η = 0 (i.e. y4(0) = 0) and
additionally from f (0) = 0 and L’Hopital’s rule we have f ′(0) = limη→0

f (η)

η
. So we do have Sy(0) = 0 and the right hand

side of the ODE system (5) is well defined at η = 0 and can be evaluated without any problem. On the other hand, the
unconventional boundary condition (i.e. the last condition of (3)) is automatically satisfied due to the smoothness of the
solution at η = 0. The condition

y4(0) = 0 (18)

is also automatically satisfied and arises naturally from Sy(0) = 0 or (15). Therefore, we will replace the unconventional
boundary condition (i.e. the last one in (3)) by (18). y1(0) = y2(0) from (15) is equivalent to the condition f (0) = 0 since
f (0) = f (η) − ηf ′(η) +

η2

2 f ′′(θη), 0 < θ < 1. Thus a proper set of boundary conditions are as follows:

y1(0) = y2(0), y1(1) = 1, y2(1) = 0, y4(0) = 0. (19)

Next, we obtain the smoothness result for the solution of the problem (2) and (3). For the reader’s convenience, we first
state a theorem in [16] for the BVP (5) and (6):

Let g(η, y(η)) ∈ Cp
[Tρ], where Tρ = {(η, x)|0 ≤ η ≤ 1, x ∈ Sρ(y(η))} and Sρ(y(η)) = {x|∥y − x∥ ≤ ρ, ρ > 0}, p ≥ 0.

Then

(i) y ∈ Cp+1(0, 1].
(ii) y ∈ Cp+1

[0, 1] if all eigenvalues of S have nonpositive real parts.

Note that g(η, y(η)), given by (9), satisfies the condition of the theorem above, and that all eigenvalues of S in (8) have
nonpositive real parts. A straightforward application of the theorem yields that the solution y for the problem (2) and (3)
has

y ∈ Cp
[0, 1], p ≥ 0. (20)

3. The computational technique

The main aim of this section is to present an idea on finding multiple solutions and to solve a relevant singular IVP (see
(26) and (27) in Section 3.2). In order to state them more clearly, the description of the computational technique will be
separated in Sections 3.1 and 3.2, respectively.

3.1. The technique for finding multiple solutions

We now explain how we find multiple solutions of the singular BVP (5), (7)–(9) and (19). From the earlier analysis the
solver bvp4c in MATLAB can be naturally applied to solve the BVP (5), (7)–(9) and (19). However, in bvp4c, an initial guess
needs to be provided (this is also crucial in finding multiple solutions). According to our computational experience for this
singular BVP (5) and (19), the numerical solution could be very sensitive to the initial guess. The numerical continuation
technique would be crucial in obtaining a good initial guess. For example, we use a discrete set of equally spaced numbers
to approximate the interval of admissible values of the Reynolds number (e.g. Re = −3, −2, −1, 0, 1, 2, 3). Once we obtain
results for a certain value of the discrete set (e.g. Re = 1), these results will be used as the initial guess of the solution of
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Fig. 1. Branches of −f ′′(1) vs. Re at α = −2, 0, 2.

the BVP at the next neighbor discrete point of the Reynolds number (e.g. Re = 0 or 2). Similarly, we can apply numerical
continuation for the expansion ratio as well.

As we see above the numerical continuation will start from an obtained solution at certain Reynolds number. So we need
to find a solution at a Reynolds number first. Also we cannot guarantee that the numerical continuation would not stop at
some discrete point of the Reynolds number1 (see also Fig. 1 for α = 0). So we sometimes need to restart the continuation
process from another solution at another Reynolds number. To achieve this, let F = Ref , and Eq. (1) becomes

8ηF ′′′
+ 4FF ′′

+ 8F ′′
+ α(4ηF ′′

+ 4F ′) − 4F ′2
= K , (21)

where K = 8Rek. The corresponding (3) (or equivalently (19) since the solution is smooth at η = 0) becomes

F ′(1) = 0, F(1) = Re, F(0) = 0, lim
η→0

η
1
2 F ′′(η) = 0. (22)

Then Eq. (21) will be the formulation to make use of an initial value method (to be explained in Section 3.2) for this high
order ODE problem. We will use the following initial conditions:

F(0) = 0, F ′(0) = A, F ′′(0) = B. (23)

Then for η = 0 we have

K = 8B + 4αA − 4A2. (24)

We will solve (21) and (23) for different A and B until finding a solution to satisfy the first condition of (22), i.e. F ′(1) = 0
and then obtaining corresponding Reynolds number Re = F(1) (here the scheme of updating A and B is based on one step
of the Newton–Raphson method). The last condition of (22) is automatically satisfied for any given values of A and B due
to the smoothness of the solution (see Remark 1 in Section 3.2). Thus, we can find a solution of (21) satisfying (22) for the
corresponding Re. Similar ideas have been seen in literature [10,11] for different boundary conditions. But there they test
all possible values of A and B until obtaining solutions for the entire range of Re. We only use the idea to find one or a few
solutions and their corresponding Re to start the BVP method and the numerical continuation.

3.2. The singular IVP

To achieve the above idea, Eq. (21) is written into a first order system by introducing new variables:

z = (z1, z2, z3)T , where z1 = F , z2 = F ′, z3 = F ′′. (25)

1 In fact the earlier studies for the case of α = 0 revealed that there are no solutions for certain interval of Re. We expect that the numerical continuation
will stop at the end points of the no-solution interval.
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Then Eq. (21) becomesz ′

1
z ′

2
z ′

3

 =


z2
z3

w(η, z)
η

 , (26)

where w(η, z) =
K
8 +

1
2 z

2
2 −

1
2 z1z3 − z3 −

α
2 (ηz3 + z2). The corresponding initial conditions become

z1(0) = 0, z2(0) = A, z3(0) = B. (27)
Here, we denote z0 = (0, A, B)T . Thus the problem (26) and (27) obtained from (21) and (22) is a singular IVP, where the
singularity occurs at η = 0 (see w(η,z)

η
in (26)). It is necessary to examine whether the solution near the singular point is

smooth for the singular IVP.
Before proceeding, we first introduce a result in [27]: For a nonlinear system of singular ODEs of the form

ηu′(η) = r(η,u(η)), 0 < η ≤ T1, (28)
where r : [0, T1] × ℘ → Rn is a vector function, ∂r

∂u : [0, T1] × ℘ → Rn×n is a matrix function, ℘ ⊂ Rn is an open domain.
The following theorem was obtained in [27].

Theorem 1. Assume that r ∈ Cm([0, T1] × ℘), ∂r
∂u ∈ Cm([0, T1] × ℘), and that equation r(0, v) = 0 has a solution v0 ∈ ℘ .

Then system (28) has for a sufficiently small T2 ∈ (0, T1] a unique solution u ∈ Cm
[0, T2] such that u(0) = v0, where

m ≥ max
λj∈δ(A0)

Reλj, A0 =
∂r(0,u)

∂u


u=v0

, (29)

and δ(A0) is the set of eigenvalues of the matrix A0.

The system of first order ODEs (26) can be written in the following form

ηz′(η) = w̃(η, z) = (ηz2, ηz3, w(η, z))T . (30)
Since z0 is always a solution of the system w̃(0, z0) = 0 for any values of A and B, and w̃(η, z) ∈ Cp([0, 1] × ℘),
∂w̃(η,z)

∂z ∈ Cp([0, 1]×℘) for a p ≥ 0, according to the Theorem1, the solvability of system (30) in Cp
[0, T2] can be guaranteed.

Note that the Jacobi matrix A0 =
∂w̃(0,z)

∂z |z=z0 is

A0 =


0 0 0
0 0 0

−
1
2
B A −

α

2
−1

 , (31)

and the eigenvalues of A0 are 0 and −1, so (29) is satisfied for p ≥ 0.

Remark 1. The fact that eigenvalues of A0 are independent of α, A and B, indicates that the request for the smoothness of
w̃(η, z) is also independent of these parameters. In other words, for any given values of A and B, the resulting solution z near
the singular point is always smooth, since the right hand side function w̃ is of polynomial (thus always smooth).

We can now evaluate the right hand side of (26) at the singular point η = 0. According to the result of previous analysis
(see Remark 1), we have known that the solution near the singular point is smooth. Therefore, the evaluation of the solution
at the singular point is not a problem, namely, if we let η → 0 in (26), we find thatz ′

1(0)
z ′

2(0)
z ′

3(0)

 =

 z2(0)
z3(0)

ŵ(0, z(0))


, (32)

where ŵ(0, z(0)) = limη→0
w(η,z)

η
. According to L’Hopital’s rule and the smoothness property at η = 0, we can further write

ŵ(0, z(0)) = lim
η→0

w(η, z)
η

= w′(0, z(0))

=
1
2


1
2
z2(0) − α


z3(0)

=
1
2


1
2
A − α


B. (33)

So the right hand side function of (26) is evaluated by (32) and (33) at the singular point. Finally, multiple solutions obtained
by the technique in this section will be presented and interpreted in the next section.
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Table 1
The comparison of the computation on LP for different methods.

α Our numerical technique AUTO Terrill and Thomas [10]

−2 (−9.8872, −3.4711) (−9.8901, −3.4634) –
0 (−9.1147, −2.2997) (−9.1125, −2.2990) (−9.1, −2.3)
2 (−8.8493, −1.5764) (−8.8033, −1.5785) –

4. Multiple solutions

The main aim of this section is to present multiple solutions, namely, the BVP (i.e. (5), (7)–(9) and (19)) and the IVP
(i.e. (26)–(27)) are solved. For theBVP, there existmany freely available software to solve it. These software’s includeMATLAB
codes bvp4c [29] and bvp5c [30], sbvp [31], bvpsuite [32,33], and Fortran codes such as BVP-solver specified in [34], COLNEW
described in [35] and COLSYS [36]. In this paper we simply use bvp4c built in MATLAB to solve the BVP. When concerning
bvp4c solver, it is requested in the code to provide a guess for the solution desired. Further, a sufficiently good guess is very
important for obtaining a good numerical solution. To provide a good guess, the numerical continuation technique described
in Section 3.1 is used. As for the IVP, we simply use the solver ode45 built in MATLAB. In addition, unless stated otherwise,
for all our computations, we use the relative error tolerance 10−3 and the absolute error tolerance 10−6.

Next, our aim is to present multiple solutions of the BVP. Before presenting multiple solutions, the quantity [−f ′′(1)] is
introduced. It is proportional to the wall skin friction [10] and is usually used to showmultiple solutions [7,10,11]. Here we
presentmultiple solutions in the sameway, that is, plotting [−f ′′(1)] against Re. In Fig. 1,multiple solutions are presented for
some given values of expansion ratio taken over a full range of cross-flow Reynolds number. Let us briefly explain how the
computational technique presented in Section 3 is used to obtain multiple solutions in Fig. 1. Firstly, we start from α = 0
since at this α multiple solutions information is mostly known from literature [10,11], where it is also shown that Sec. I
contains all the well behaved solutions and no solution exists in the range −9.1 < Re < −2.3. So we start from a relatively
large injection Reynolds number (e.g. Re = 50). According to our computational experience, in this case, the solution can be
easily obtained by bvp4c for an initial guess (e.g. [0, 0, 0, 0]). Then, the numerical continuation is used to obtain the solution
at the next neighbor Reynolds number (e.g. Re = 49) until near Re = −2.3. At this juncture, we begin to find Sec. II solution
instead of Sec. I solution. However, we find that Sec. II solution cannot be easily obtained by bvp4c for arbitrarily chosen
initial guesses. In this situation IVP method given in Section 3.2 is used to provide an initial guess of the solution for bvp4c.
When a solution at a certain Reynolds number (denoted as R̃e) is obtained, the numerical continuation is again used to find
the solution near R̃e until near Re = −2.3. Finally, the continuous deformation of the velocity profiles (i.e. as Re → −2.3
from above and below the limiting profiles are identical) is used to stop the numerical continuation. Next, the computational
process above is extended to find other solutions and multiple solutions corresponding to α = −2, 2.

As observed in Fig. 1, we note that the numerical results at α = 0 are the same as what Terrill and Thomas [10] or
Shankararaman and Liu [11] obtained. In a sense, this may illustrate the reliability of our numerical technique. On the other
hand, the well-known bifurcation software package AUTO [37] can be used to further validate our computational results. In
order to use AUTO, the BVP (i.e. (5), (7)–(9) and (19)) is converted into an autonomous system by defining y5 = η, and the
condition y5(0) = 0 (or y5(1) = 1) is added to (19). Then, the constant H is defined to measure the bifurcation, i.e.

H =

 1

0

5
i=1

y2i (η) dη. (34)

The bifurcation analysis is a process of seeking the fold point (or limit point (LP)). Due to the high sensitivity to the initial
guess and the difficulty in changing the tangential direction for the problem with singularity, we have difficulty to obtain
all limit points using AUTO, but we still managed to obtain a few, which are consistent with the results obtained by our
method. The results are listed in the following figures and Table 1. In Figs. 2 and 3(a), the computed results of LP are shown
(noting that a black dot represents a LP). Further, Table 1 presents the comparison of the computation on LP for different
methods. Obviously, these results are found to be in very good agreement, indicating that our numerical technique is solid
and effective in computing the multiple solution profile. In Fig. 4(a), we once again show multiple solutions in the range
−13.33 < Re < −8.8 for the convenience of illustration. With AUTO, we start from near Re = −12, and the bifurcation
results are showed in Fig. 4(b). During the calculation of the bifurcation, we not only find that the point F is a bifurcation
point, but also detect that the point E is both a bifurcation point and a limit point (LP). These results illustrate the correctness
of multiple solutions presented in Fig. 4(a). To be specific, the point E is a bifurcation point, which indicates the existence
of multiple solutions (see the points C and D in Fig. 4(a)). On the other hand, the point E is a LP, which indicates the change
of the solution near the point D. In other words, Sec. V(ii) solution will not exist near Re = −40, or there are only three
solutions near Re = −40. The sharp decrease of the value of −f ′′(1) corresponding to Sec. VI solution2 in Fig. 4(a) agrees

2 In Fig. 1, values of−f ′′(1) for Sec. VI have not been completely included for the sake of clarity of presentation because they aremuch larger inmagnitude
compared to Sec. II. For example, the value of −f ′′(1) is −106.8324 as Re = −3.
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Fig. 2. Bifurcation diagrams for H at (a) α = 0, and (b) α = −2.

Fig. 3. Bifurcation diagrams (left) and solution Sec. VI (right) for α = 2.

Fig. 4. Multiple solutions (left) and bifurcation diagram (right) for α = 2.

well with the solid line in Fig. 4(b) due toH ∝ |− f ′′(1)| (see (34)). In Fig. 4, the bifurcation point F corresponds to the points
A and B, and the closed curve formed by the points E and F corresponds to the curve ABCD. Since the Sec. VI solution is found
for the first time, Fig. 3(b) shows the behavior of the axial velocity profiles [f ′(η)] (its physical meaning can be found in [10])
for different cross-flow Reynolds numbers. As for axial velocity profiles corresponding to other solutions (e.g. solution Sec. I
or solution Sec. II in Fig. 1), the reader can find them in the Refs. [10,11], where the characteristic features of those solutions
are summarized.

5. Asymptotic solutions as a validation of our numerical technique

In this section we construct asymptotic solutions for a certain range of Reynolds number Re and expansion ratio α.
However, our goal is not to construct all possible asymptotic solutions in each category of parameters, but to obtain some
of these solutions from another perspective in order to partially validate numerical solutions we obtained in the previous
section.

5.1. Solution for large injection Reynolds numbers

The asymptotic solution of Eq. (1) for the large injection Reynolds number can be obtained by the Lighthill method. As
indicated in [38], this is the availablemethodwhich can construct a sufficiently smooth asymptotic solution for all η ∈ [0, 1].
Eq. (1) can be written as

ε(ηf ′′′
+ f ′′) + ε

α

2
(ηf ′′

+ f ′) + ff ′′
− f ′2

= λ, (35)
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Table 2
The numerical and asymptotic values of −f ′′(1) for Section I.

Re α = 0 α = −2 α = 2
Numerical Asymptotic Numerical Asymptotic Numerical Asymptotic

60 2.46836251 2.51726594 2.53323720 2.46493193 2.40705480 2.56959995
70 2.46878514 2.50978489 2.52479941 2.46492725 2.41547402 2.55464253
80 2.46899697 2.50417413 2.51825890 2.46492375 2.42184869 2.54342451
90 2.46908870 2.49981021 2.51305787 2.46491028 2.42683540 2.53469940

100 2.46913215 2.49631908 2.50881277 2.46491884 2.43083795 2.52771932

where

ε =
2
Re

, λ =
2k
Re

. (36)

By introducing a new variable ξ , let

η = ξ + εX1(ξ) + o(ε). (37)

X1(ξ) is unknown to be determined next. Assuming the expansion of the solution to be

f (η) = g(ξ) =

∞
i=0

gi(ξ)εi, λ =

∞
i=0

λiε
i. (38)

Substituting Eq. (38) into Eq. (35), and equating coefficients of εi(i = 0, 1, 2, . . .) yields the equations

g0
..
g0 − (

.
g0)

2
= λ0, (39)

g0
..
g1 − 2g0

.
g1 +

..
g0g1 = 2λ0

.

X1(ξ) + λ1 −


ξ

...
g0 +

..
g0 +

α

2
(ξ

..
g0 +

.
g0)

, (40)

. . .

where · denotes the derivative with respect to ξ . Assuming ξ̄ is the root of Eq. (37) when η = 1, namely

1 = ξ̄ + εX1(ξ̄ ) + · · · . (41)

From Eq. (41) we can obtain

ξ̄ = 1 − εX1(1) + ε2
[X1(1)

.

X1(1) − X2(1)] + · · · . (42)

The first two conditions of Eq. (3) become

g0(1) = 1, g1(1) =
.
g0(1)X1(1), (43)

.
g0(1) = 0,

.
g1(1) = X1(1)

..
g0(1). (44)

Similarly to the above process, when η = 0, the third condition of Eq. (3) becomes

g0(0) = 0, g1(0) = X1(0)
.
g0(0). (45)

Combining Eqs. (39) and (40) with Eqs. (43)–(45), the results are as follows:

λ0 = −
π2

4
, λ1 = −

π2

4
+

π

2
− 1, (46)

X1

π

2
ξ


=
ξ

2
sin
π

2
ξ


−


1 +

α

2

 ξ

π
cos

π

2
ξ


+
2
π2

sin
π

2
ξ


+
1
π

cos
π

2
ξ


+


1
π

−
2
π2

−
1
2


ξ, (47)

g0(ξ) = sin
π

2
ξ


, g1(ξ) =
1
2
cos

π

2
ξ


. (48)

So f (η) = g(ξ) = g0(ξ) + εg1(ξ) + · · · and an asymptotic approximation of f ′′(1) can be computed. The numerical and
asymptotic values of −f ′′(1) are listed in Table 2 with expansion ratios α = 0 and ±2. The results agree well.

5.2. Solution for small Reynolds number and small expansion ratio

The asymptotic solution for small Reynolds number Re and small expansion ratio α can be obtained by a regular
perturbation method, which is corresponding to small suction and injection for Solution Sec. I.
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Let ε =
Re
2 be a small perturbation parameter. Assuming the solution of Eq. (2) to be

f = f0(η) + εf1(η) + O(ε2), (49)

substituting Eq. (49) into Eq. (2) and equating the coefficient of like powers of ε on both sides, we get the leading order and
the first order equations as follows:

ηf ′′′′

0 + 2f ′′′

0 +
α

2
(ηf ′′′

0 + 2f ′′

0 ) = 0, (50)

ηf ′′′′

1 + 2f ′′′

1 +
α

2
(ηf ′′′

1 + 2f ′′

1 ) + f0f ′′′

0 − f ′

0f
′′

0 = 0. (51)

The corresponding boundary conditions of Eqs. (50) and (51) are

f0(1) = 1, f ′

0(1) = 0, f0(0) = 0, lim
η→0

η
1
2 f ′′

0 (η) = 0, (52)

and

f1(1) = 0, f ′

1(1) = 0, f1(0) = 0, lim
η→0

η
1
2 f ′′

1 (η) = 0, (53)

respectively. Secondly, because α is also small, we can use α as a secondary parameter and expand f0, f1 in the following
forms.

fi = fi0 + αfi1 + O(α2), i = 0, 1. (54)

Substituting (54) into Eq. (50), we can obtain the equations of the leading and first order in α

ηf ′′′′

00 + 2f ′′′

00 = 0, (55)

f00(1) = 1, f ′

00(1) = 0, f00(0) = 0, lim
η→0

η
1
2 f ′′

00(η) = 0, (56)

and

ηf ′′′′

01 + 2f ′′′

01 +
1
2
(ηf ′′′

00 + 2f ′′

00) = 0, (57)

f01(1) = 0, f ′

01(1) = 0, f01(0) = 0, lim
η→0

η
1
2 f ′′

01(η) = 0. (58)

The solutions of f00, f01 are

f00 = −η2
+ 2η, (59)

f01 =
1
6
η3

−
1
3
η2

+
1
6
η. (60)

In the similar process, using α as the secondary parameter, substituting (54) into Eq. (51), and collecting terms of the same
order in α, we can obtain

ηf ′′′′

10 + 2f ′′′

10 + f00f ′′′

00 − f ′

00f
′′

00 = 0, (61)

f10(1) = 0, f ′

10(1) = 0, f10(0) = 0, lim
η→0

η
1
2 f ′′

10(η) = 0, (62)

and

ηf ′′′′

11 + 2f ′′′

11 +
1
2
(ηf ′′′

10 + 2f ′′

10) + f00f ′′′

01 + f01f ′′′

00 − f ′

00f
′′

01 − f ′

01f
′′

00 = 0, (63)

f11(1) = 0, f ′

11(1) = 0, f11(0) = 0, lim
η→0

η
1
2 f ′′

11(η) = 0, (64)

where f0 = f00 + αf01. The solutions of (61)–(64) can be obtained.

f10 =
1
18

η4
−

1
3
η3

+
1
2
η2

−
2
9
η, (65)

f11 = −
1
72

η5
+

17
216

η4
−

2
9
η3

+
19
72

η2
−

23
216

η. (66)

Substituting f00, f01, f10, f11 into f = f00 + αf01 + ε(f10 + αf11) + O(ε2), we can obtain the expression of f as the Reynolds
number and expansion ratio are both small. The numerical and asymptotic values of −f ′′(1) are compared for some values
of α and Re in Table 3. The smaller the Reynolds number Re and expansion ratio α, the closer the numerical and asymptotic
solutions are, indicating that our numerical computations are reliable.
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Table 3
The numerical and asymptotic values of −f ′′(1) for section I.

Re α = 0 α = −0.05 α = 0.05
Numerical Asymptotic Numerical Asymptotic Numerical Asymptotic

0.592 2.0843 2.0987 2.0992 2.1133 2.0694 2.0841
0.297 2.0456 2.0495 2.0614 2.0651 2.0299 2.0339
0.041 2.0068 2.0068 2.0233 2.0234 1.9903 1.9903
−0.052 1.9912 1.9913 2.0081 2.0082 1.9744 1.9745
−0.141 1.9755 1.9765 1.9927 1.9937 1.9584 1.9593
−0.422 1.9199 1.9297 1.9383 1.9478 1.9015 1.9115

5.3. Solution for large suction Reynolds numbers

In general, there will be a boundary layer at the wall when there is large suction. The numerical results will confirm it. As
the viscous terms become dominant, the perturbation solution of Eq. (1) for large suction valid outside the boundary layer
would break down inside the layer and the inner solution should satisfy the conditions at the wall. In order to obtain the
perturbation expansion of Eq. (1) corresponding to the large suction Reynolds number, Eq. (1) can be written as

ε(ηf ′′′
+ f ′′) + ε

α

2
(ηf ′′

+ f ′) + f ′2
− ff ′′

= β2
+

α

2
β + γ


ε, (67)

where

ε = −
2
Re

, β2
+

α

2
β + γ


ε = −

2k
Re

, (68)

and

β = f ′(0) = β0 + εβ1 + ε2β2 + · · · , γ = f ′′(0) = γ0 + εγ1 + ε2γ2 + · · · . (69)

From Eq. (67), the reduced problem can be obtained.

f ′2
0 − f0f ′′

0 = β2
0 , (70)

the corresponding boundary conditions are

f0(0) = 0, f0(1) = 1, f ′

0(1) = 0, lim
η→0

η
1
2 f ′′

0 (η) = 0. (71)

One solution of Eq. (70) is

f0 = β0η. (72)

According to the condition f (1) = 1, one obtains

β0 = 1, γ0 = f ′′

0 (0) = 0. (73)

Letting

f = η + f̄ , (74)

and substituting it into Eq. (67) yields

ε(ηf̄ ′′′
+ f̄ ′′) + ε

α

2
(ηf̄ ′′

+ f̄ ′) + f̄ ′2
+ 2f̄ ′

− (f̄ + η)f̄ ′′
= 2β1ε +


β2
1 +

α

2
β1 + 2β2 + γ1


ε2

+ · · · . (75)

The asymptotic solution of Eq. (75) may be written in the form (boundary layer correction method [39–41]):

f̄ = ε(f1(η) + g1(τ )) + ε2(f2(η) + g2(τ )) + ε3(f3(η) + g3(τ )) + · · · , (76)

where τ =
1−η

ε
is the stretching transformation near the wall and gi(τ ), i = 1, 2, . . . , are boundary layer functions (rapidly

decaying when η is away from the wall). The boundary conditions satisfied by f̄ (η) are

f̄ (0) = 0, f̄ (1) = 0, f̄ ′(1) = −1, lim
η→0

η
1
2 f̄ ′′(η) = 0. (77)
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Substituting (76) into Eq. (75) and equating coefficients of εr yields

ε : 2f ′

1 − ηf ′′

1 = 2β1, (78)

ε2
: 2f ′

2 − ηf ′′

2 =
α

2
β1 + γ1 + β2

1 + 2β2 − ηf ′′′

1 − f ′′

1 −
α

2
ηf ′′

1 −
α

2
f ′

1 + f ′′

1 f1 − f ′2
1 , (79)

ε3
: 2f ′

3 − ηf ′′

3 =
α

2
β2 + γ2 + 2β1β2 + 2β0β3 − ηf ′′′

2 − f ′′

2 −
α

2
ηf ′′

2 −
α

2
− f ′

2 − 2f ′

1f
′

2 + f ′′

1 f2 + f ′′

2 f1, (80)

ε4
: 2f ′

4 − ηf ′′

4 =
α

2
β3 + γ3 + 2β1β3 + 2β0β4 + β2

2 − ηf ′′′

3 − f ′′

3 −
α

2
ηf ′′

3 −
α

2
f ′

3

− 2f ′

1f
′

3 − f ′2
2 + f ′′

1 f3 + f ′′

3 f1 + f ′′

2 f2, (81)

ε−1
:

...
g1 +

..
g1 = 0, (82)

ε0
:

...
g2 +

..
g2 =

..
g1 + τ

...
g1 +

α

2

..
g1 − 2

.
g1 + τ

..
g1 +

.
g
2
1 −

..
g1f1(1) −

..
g1g1, (83)

ε :
...
g3 +

..
g3 =

..
g2 + τ

...
g2 +

α

2
(

..
g2 −

.
g1 − τ

..
g1) − 2

.
g2 + τ

..
g2 − 2

.
g1f ′

1(1)

+ 2
.
g1

.
g2 −

..
g1(f2(1) − τ f ′

1(1)) −
..
g1g2 −

..
g2f1(1) −

..
g2g1, (84)

. . .

where · and ′ denote the derivative with respect to τ and η, respectively, and we have used f1(η) = f1(1 − ετ) =

f1(1) − ετ f ′

1(1) +
1
2ε

2τ 2f ′′

1 (1) + · · · and f2(η) = f2(1 − ετ) = f2(1) − ετ f ′

2(1) + · · ·.
The boundary conditions to be satisfied by fi(η) and gi(τ ) at η = 1 or τ = 0 are

f1(0) = 0, εg ′

1(τ )|η=1(= −
.
g1(τ )|τ=0) = −1, f1(η)|η=1 + g1(τ )|τ=0 = 0, (85)

fi(0) = 0, f ′

i−1(η)|η=1 −
.
g i(τ )|τ=0 = 0, fi(η)|η=1 + gi(τ )|τ=0 = 0, (i = 2, 3, 4, . . .). (86)

The boundary layer solution of Eq. (82) is

g1(τ ) = C1e−τ . (87)

From the condition
.
g1(τ )|τ=0 = 1, one obtains C1 = −1. The solution of Eq. (78) satisfying (85) is

f1(η) = β1η + (1 − β1)η
3. (88)

From (88), one can obtain γ1 = f ′′

1 (0) = 0. The parameter β1 is still unknown to be determined next. Substituting (88) into
Eq. (79) and noticing f2(0) = 0 yields

f2(η) = (1 − β1)
3α
2

η3 ln η − η5


−
3β1

5
+

3
10

+
3β2

1

10


+ η3


A2

3
+

β1α

2
−

α

2


+ 6η2(β1 − 1) + β2η, (89)

where A2 is an integration constant. Since we look for the analytic solution we thus set β1 = 1 (otherwise, f ′′′

2 (η) → ∞ as
η → 0). Hence,

f2(η) =
A2

3
η3

+ β2η. (90)

Then Eq. (83) becomes

...
g2 +

..
g2 = τ

...
g1 +

α

2

..
g1 − 2

.
g1 + τ

..
g1 +

.
g
2
1 −

..
g1g1. (91)

Subject to the condition f ′

1(η)|η=1 −
.
g2(τ )|τ=0 = 0, the boundary layer solution of Eq. (91) is then

g2 = −
1
2
(6 + α + 4τ + τα)e−τ . (92)

From the condition f2(η)|η=1 + g2(τ )|τ=0 = 0, one also obtains

f2 =


3 +

α

2
− β2


η3

+ β2η, (93)

from (93),

γ2 = f ′′

2 (0) = 0. (94)
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Table 4
The numerical and asymptotic values of −f ′′(1).

Re α = 0 α = −2 α = 2
Numerical Asymptotic Numerical Asymptotic Numerical Asymptotic

−30.978 11.9219 14.0369 15.0322 15.2182 13.0232 12.8349
−37.952 16.3119 17.6250 18.7029 18.7665 16.3830 16.4724
−41.993 18.8162 19.6869 20.7739 20.8117 18.4633 18.5531
−51.475 24.6565 24.4957 25.5782 25.5930 23.3437 23.3923
−72.439 36.1969 35.0574 36.1180 36.1226 33.9753 33.9893
−92.48 45.1126 45.1171 46.1634 46.1665 44.0590 44.0659
−103.05 50.4133 50.4161 51.4566 51.4598 49.3652 49.3709
−122.81 60.3127 60.3152 61.3467 61.3512 59.2746 59.2781

The parameter β2 will be determined later from the solution f3(η) of Eq. (80). We neglect tedious calculation and simply
summarize the results below. The coefficients β2, β3, β4 are:

β2 = 3 +
α

2
, β3 = 18 + 4α +

1
4
α2, β4 =

591
4

+
79
2

α +
15
4

α2
+

1
8
α3, γ3 = γ4 = 0, (95)

and f2, f3, f4, g2, g3, g4 are:

f2 =


3 +

α

2


η, (96)

f3 =


18 + 4α +

α2

4


η, (97)

f4 =


591
4

+
15α2

4
+

α3

8
+

79α
2


η, (98)

g2 = −
1
2
(6 + α + 4τ + τα)e−τ , (99)

g3 = −


τ 2


α +
7
2

+
α2

8


+ τ


15 +

7α
2

+
α2

4


+ 18 + 4α +

α2

4


e−τ , (100)

g4 =
3
4
e−2τ

−


1
4
α2

+
1
48

α3
+

7
4
α +

16
3


τ 3

+


11
8

α2
+

1
16

α3
+ 12α +

81
2


τ 2

+


7
2
α2

+
31
8

α3
+

71
2

α + 129


τ +


15
4

α2
+

1
8
α3

+
79
2

α +
297
2


e−τ . (101)

Then the asymptotic solution for all η ∈ [0, 1] is

f (η) = η + ε(f1(η) + g1(τ )) + ε2(f2(η) + g2(τ )) + ε3(f3(η) + g3(τ )) + ε4(f4(η) + g4(τ )) + · · · . (102)

Then we can calculate f ′′(1) based on the asymptotic solution above:

d2f
dη2


η=1

=
Re
2

+ 1 +
α

2
−

10 + 2α
Re

+
126 + 2α2

+ 30α
Re2

. (103)

The values of (103) are compared with numerical results in Table 4, which shows that the smaller the Reynolds number Re,
the closer the numerical and asymptotic values of −f ′′(1) are.

6. Conclusions

Wehave investigatedmultiple solutions of a singular nonlinear BVP arising from the laminar flow in a porous pipewith an
expanding or contracting wall. We propose a numerical technique for the singular nonlinear BVP andmultiple solutions are
presented for some typical values of the expansion ratio and a full range of the cross-flow Reynolds number. The numerical
techniquewe propose in the paper has advantage over existingmethods in dealingwith some difficulties (e.g. the singularity
and multiple parameters) in solving this singular nonlinear BVP. Based on the comparison of numerical results with AUTO
and some asymptotic results, the numerical technique is robust and efficient in solving this nonlinear singular BVP for the
entire range of Reynolds number Re. We believe that it can be used to some similar problems arising from fluid mechanics
and other scientific fields.
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