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A B S T R A C T

This paper is concerned with asymptotic solutions of a nonlinear boundary value problem (BVP), which
arises in a study of laminar flow in a uniformly porous channel with retractable walls and an applied trans-
verse magnetic field. For different ranges of the control parameters (i.e. a, Re and M) arising in the BVP, four
cases are considered using different singular perturbation methods. For the first case, unlike those in the
existing literature, we make use of the Lighthill method and successfully construct an asymptotic solution
with high-order derivatives at the center of the channel. For the second case, under large suction we con-
sider M2 = O(1) and M2 = O(Re), respectively, which will further extend the applying range of asymptotic
solutions. In other cases, asymptotic solutions with a boundary layer are successfully constructed. In addi-
tion, numerical solutions presented for each case agree well with asymptotic solutions, which illustrates
that the asymptotic solutions constructed in this paper are more reliable. Finally, the influences of some
parameters on flow field are discussed to develop a better understanding of the flow problem.

Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved.

1. Introduction

Blood circulating in the blood vessel has a strong effect on the
human body and also serves as one of the basic substances constitut-
ing the human body. Its dynamics is closely associated with people’s
health. For example, as said by Srivastava [1], atherosclerosis, a lead-
ing cause of death in many countries, is one of the phenomenon in
which the flow behaviour of the blood in the vessel will be influenced
by the intimal thickening of stenos artery. When severe stenosis sup-
presses the speed of blood, the blood supply and oxygen to the brain
are reduced. Under this situation some cells in the brain start to die
and then the resulting serious diseases will appear (e.g. strokes). So
studies of fluid transport in the vessel can serve to better understand
the functions of biological organisms (e.g. lung and cardiac).

When concerning systemic circulation in blood circulation, the
blood in the left ventricle is being forced into the aorta by systole
and the mitral valve between left ventricle and left atrium is closed.
At this juncture the left ventricle forms a vessel with one end closed.

* Corresponding author.
E-mail address: sixinhui_ustb@126.com (X. Si).

Meanwhile, the mass transfer of the vessel between inside and out-
side can be achieved by the seepage across permeable wall of the
vessel [2–4]. Furthermore, some idealized mathematical models are
proposed which consider the vessel to be permeable [5,6]. So studies
on such flow dynamics can be meaningful in the field of bioengi-
neering and medicine. In 1990, a mathematical model on the viscous
flow of Newtonian fluid inside a permeable tube with expanding or
contracting cross section was established by Goto and Uchida [7]. In
their work, a expansion ratio a and a cross-flow Reynolds number
Re (defined in Section 2) were introduced to measure the expansion
of the pipe and the mass transfer, respectively. Later, Dauenhauer
and Majdalani [8] considered the case that laminar flow in a porous
channel with expanding or contracting walls and thus established a
mathematical model. So far there have existed some studies on the
mathematical model. To list a few, one may count Majdalani et al. [9],
Asghar et al. [10] and Hang Xu et al. [11]. On the other hand, some of
medical literature have also shown that certain external factors can
change the hydrodynamic in blood flow. When the blood is regarded
as an electrically conducting fluid, the control of blood flow can be
achieved by the application of the magnetic field (Noting that the
fluid is often called as Magnetohydrodynamics or MHD). Based on
the experimental investigation, Karmilov [12] has revealed that the
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magnetic field exerted a most significant influence on the vascular
system. Subsequently, Sambasiva [13] also studied an unsteady MHD
blood flow through a porous channel with porous walls. So far, some
valuable results on MHD in a pipe have been reported. For example,
as said in [14], the effects of MHD on blood flow are as follows: i) to
reduce the high shear stress caused by stenosis and hence to prevent
the damage to the red and endothelial cells, which will help bioengi-
neers in the design of artificial organs and the treatment of vascular
diseases (e.g. [15–18]). ii) to delay the transition from laminar to tur-
bulent flow inside the blood vessel and thus reducing high intensity
shear zones, which are unfavorable to the blood and arterial wall.
This may be vital to watch out for the symptoms of a carotid artery
blockage (e.g. [19,20]). Motivated by above works, we have realized
the importance of magnetic field appearing in a model of laminar
flow in a porous pipe with expanding or contracting walls. However,
very little is known so far about the result of laminar flow in a porous
channel with expanding or contracting walls and an applied trans-
verse magnetic field. Therefore, based on the work [8], a principle
objective of the current study is to overcome a deficiency in their
model that does not account for the presence of a magnetic field. In
fact, the investigation of the steady flow of an electrically conduct-
ing viscous fluid through a semi-infinite flat plate with an applied
transverse magnetic field has been initiated by Suryaprakasrao [21],
who obtained an asymptotic solution for small Hartmann numbers
(defined in Section 2). Later, Terrill and Shrestha [22,23] extended
Suryaprakasrao’s work by considering laminar flow in a porous chan-
nel with motionless walls and an applied transverse magnetic field.
In their studies, based on either numerical or asymptotic approaches,
some solutions were obtained for both small and large Reynolds
numbers and all values of Hartmann number.

In fact, for the viscous flow in a porous channel with station-
ary walls, the earliest researcher can be traced back to Berman [24].
In his study, a nonlinear boundary value problem (BVP) with a
cross-flow Reynolds number Re was obtained from the classical
Navier-Stokes equations. For small Re, he constructed an asymptotic
solution using a regular perturbation method. Subsequently, a num-
ber of further studies about the existence of multiple solutions of
such a BVP followed shortly thereafter. Among these are the works
of Robinson [25], Skalak and Wang [26], Shih [27], Stephen [28]
and Lu [29–33]. Recently, when the walls of the channel were not
motionless, Hang Xu et al. [11] obtained three solutions for large
suction using homotopy analysis method (HAM). In addition, the
temporal and spatial stabilities have also considerable attention in
the past due to the existence of multiple solutions of the BVP, where
one may count Brady [34], Durlofsky and Brady [35], Sobey and
Drazin [36], Zaturska, Drazin and Banks [37].

The purpose of this paper is to extend previous investigations
by presenting asymptotic solutions for laminar flow in a porous
channel with expanding or contracting walls and an applied trans-
verse magnetic field. Specifically, in Section 2, by introducing the
flow geometry, governing equations with boundary conditions and
a stream function, a BVP (i.e. Eqs. (13)–(14)) including three param-
eters (i.e. a, Re and M) is obtained. In general, when constructing
a perturbation solution of the BVP, we should consider the order
of magnitude among these parameters, otherwise the perturbation
solution constructed is only valid for the limited scope of parameters.
Therefore, Section 3 serves to present asymptotic solutions for dif-
ferent cases. The asymptotic and numerical solutions are compared
and discussed in Section 4. Finally, Section 5 concludes the paper.

2. Mathematical formulation of the problem

We assume that the channel is of semi-infinite length with one
closed end. In addition, to consider a two-dimensional flow, we
assume that the distance 2a between the porous walls is much

smaller than the channel’s width. Both sidewalls are assumed to have
equal permeability −vw and to expand or contract uniformly by a
time-dependent rate ȧ(t). As shown in Fig. 1, x and y indicate the
streamwise direction and the normal direction, respectively. u and
v denote the velocity components along x− and y−axes. The flow
velocity is zero at the closed end (x = 0). As a result, the motion
of a viscous incompressible and electrically conducting fluid through
a porous channel with an applied transverse magnetic field can be
described by the following equations:

∇ • V = 0, (1)

and

∂V
∂t

+ (V • ∇)V = − 1
q

∇p + m∇2V +
1
q

J × B, (2)

where J and B are given by the Maxwell equations

∇ × H = 4pJ, (3)

∇ × E = 0, (4)

∇ • B = 0, (5)

and Ohm’s law

J = s[E + V × B], (6)

where B = lmH, V = (u, v) and the symbols m, s , and lm represent
the viscosity of the fluid, the electrical conductivity and the magnetic
permeability, respectively.

For simplicity, we further assume that a constant magnetic field
of strength H0 is applied perpendicular to the walls and there is no
external electric field. Meanwhile, here the induced magnetic and
electric fields produced by the motion of the electrically conducting
fluid are neglected. With these assumptions the magnetic term J × B
in Eq. (2) reduces to

J × B = −sH2
0V. (7)

Fig. 1. Physical configuration.
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When we take into account the symmetry with respect to the
midsection plane, the necessary boundary conditions for the half-
domain (y ≥ 0) may be as follows:

u = 0, v = −vw; y = a(t), (8)

∂u
∂y

= 0, v = 0; y = 0, (9)

u = 0, v = 0; x = 0. (10)

An appropriate stream function 0 is introduced, denoting

0 =
mx
h

F(y∗, t), (11)

where y∗ = y
a is a dimensionless variable. When there is no con-

fusion, we will delete the superscript ∗ in the following derivation.
Then the velocity components become

u =
mx
a2

Fy, v = −m

a
F. (12)

Substituting Eq. (7) and Eq. (12) into Eqs. (1)-(2) and denoting f =
F

Re , with the assumptions that the wall expansion ratio a is constant
and F is made dependent on y and a (see [8] for more detail on them),
we can obtain the BVP of the form

f ′′′ + a( yf ′′ + 2f ′) + Re( f f ′′ − f ′2) − M2f ′ = k, (13)

and the boundary conditions

f (0) = 0, f ′′(0) = 0, f (1) = 1, f ′(1) = 0, (14)

where Re = avw
m is called as the cross-flow Reynolds number (Re > 0

for injection and Re < 0 for suction), a = aȧ
m is called as the wall

expansion ratio, M = lmH0a
(

s
qm

) 1
2 is called as the Hartmann num-

ber, k is an integration constant and ′ denotes differentiation with
respect to y.

3. Asymptotic solutions for the BVP (i.e. Eqs. (13) and (14))

The main aim of this section is to present asymptotic solutions
for these parameters (i.e. a, Re and M) with different orders of mag-
nitude. To show them more clearly, the contents on them will be
separated in Sections 3.1-3.4, respectively.

3.1. Solution for large injection Reynolds numbers

For large injection, we consider the case a = O(1) and M2 =
O(1), and treat e = 1

Re as the perturbation parameter. Then Eq. (13)
becomes

ef ′′′ + ea( yf ′′ + 2f ′) + ( f f ′′ − f ′2) − eM2f ′ = ek. (15)

Before constructing the asymptotic solution, we first introduce
a result in [38]. When M = 0, Majdalani and Zhou have solved

Eq. (13) asymptotically using a regular perturbation method and
the variation of parameters method. The corresponding asymptotic
solution is as follows:

f (r) = sinr + e

{
− 2a

p
r +

(
p

4
− 4a

p

)

×
[

(r cosr − sinr) ln tan
1
2
r − cosrS(r)

]

+a sinr +
[(

1
2

− 8ap−2
)

S
(

1
2
p

)
+ 4ap−2 − 1

2

]
r cosr

}
,

(16)

where r = 1
2py and S(r) =

∫ r
0 0 csc0d0. When Eq. (16) is differenti-

ated three times, we can obtain

f ′′′(r) =
1
8
p3

(
− cosr + e

{
−a cosr +

(
1
4
p − 4a

p

)

×
[
− sinrS(r) − (2 cosr − r sinr) ln tan

1
2
r − 1

]

−
[(

1
2

− 8ap−2
)

S
(

1
2
p

)
+ 4ap−2 − 1

2

]
(3 cosr − r sinr)

})
,

(17)

where ′ denotes differentiation with respect to r. As observed
Eq. (17), it becomes unbounded as r → 0 due to the secular term
cosr ln tan 1

2r. Besides this, when a = 0, the series solution, given by
Yuan [39], also exhibits the similar feature (i.e. the third derivative
of the series solution tends to infinite at the center of the chan-
nel). However, here the unboundedness does not seem to occur in
practical application. Later, the existence of a viscous shear layer,
pointed out by Terrill [40], would result in the appearance of the
unboundedness. To eliminate the unboundedness in f

′ ′ ′
, Zhou and

Majdalani [38] obtained a uniformly valid composite solution using
matched-asymptotic expansions with logarithmic corrections. How-
ever, in the current study, we will not plan to follow their line due
to the complexity of matching process. The Lighthill method (Noting
that it is a method of strained coordinates, the reader can see [41] for
more detail on it) is used to eliminate the secular term. The specific
process is as follows: Firstly, we introduce a variable transformation
on y:

y = n + eX1(n) + e2X2(n) + O(e3), (18)

where the functions X1, X2 will be determined later. f and ek can be
expanded as the following forms:

f ( y) � g(n) = g0(n) + eg1(n) + e2g2(n) + O(e3), (19)

ek = k0 + ek1 + e2k2 + O(e3). (20)

Substituting Eqs. (18)–(20) into Eq. (15) and equating coefficients of
en, one can obtain

e0 : g0g̈0 − ġ0
2 = k0 (21)

e : ...g0+a(ng̈0+2ġ0)+g0g̈1+g1g̈0−2ġ0ġ1−M2ġ0 =k1+3Ẋ1k0 · · · · · ·.
(22)
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Here • denotes the derivative with respect to n. According to Eq. (14),
the boundary conditions corresponding to gi(i = 0, 1, 2, · · ·) can be
induced:

i). The wall of the channel (i.e. y = 1 )
We assume that ñ is the root of Eq. (18) at y = 1, then

ñ =1 − eX1(ñ) − e2X2(ñ) + O(e3)

=1 − e
{

X1(1) + Ẋ1(1)
[
−eX1(ñ) − e2X2(ñ)

]
+ · · ·

}
− e2

{
X2(1) + Ẋ2(1)

[
−eX1(ñ) − e2X2(ñ)

]
+ · · ·

}
· · · · · ·

=1 − eX1(1) − e2
[
X2(1) − Ẋ1(1)X1(1)

]
+ O(e3). (23)

Using Eq. (23), we can induce

f |y=1 =1 ⇒ 1 = g|
n=ñ

= g|n=1 + ġ|n=1

×
{
−eX1(1) − e2

[
X2(1) − Ẋ1(1)X1(1)

]
+ · · ·

}
=g0|n=1 + e [g1 − X1ġ0] |n=1 + O(e2), (24)

f ′|y=1 =0 ⇒ 0 = ġ|
n=ñ

= ġ|n=1 + g̈|n=1

×
{
−eX1(1) − e2

[
X2(1) − Ẋ1(1)X1(1)

]
+ · · ·

}
=ġ0|n=1 + e[ġ1 − X1g̈0]|n=1 + O(e2). (25)

The resulting boundary conditions at y = 1 become

g0|n=1 = 1, g1 − X1ġ0|n=1 = 0, · · · (26)

ġ0|n=1 = 0, ġ1 − X1g̈0|n=1 = 0, · · · . (27)

ii). The center of the channel (i.e. y = 0)
We suppose that n̂ is the root of Eq. (18) at y = 0, then

n̂ = − eX1(n̂) − e2X2(n̂)) + O(e3) = −eX1(0)

− e2
[
X2(0) − Ẋ1(0)X1(0))

]
+ O(e3), (28)

f |y=0 =0 ⇒ 0 = g|
n=n̂

= g|n=0 + ġ|n=0

×
{
−eX1(0)e2

[
X2(0) − Ẋ1(0)X1(0)

]
+ · · ·

}
=g0|n=0 + e [g1 − X1ġ0] |n=0 + O(e2), (29)

f ′′|y=0 = 0 ⇒ 0 = g̈ + ġ

[
−eẌ1 − e2Ẍ2

1 + eẊ1 + e2Ẋ2

]
|
n=n̂

=
{

g̈|n=0 + ...g|n=0

[
−eX1(0) − e2 (X2(0)

−Ẋ1(0)X1(0)
)

+ · · ·
]}

+
{

ġ|n=0

+g̈|n=0

[
−eX1(0) − e2

(
X2(0) − Ẋ1(0)X1(0)

)

+ · · · ]
}

•

[
−eẌ1 − e2Ẍ2

1 + eẊ1 + e2Ẋ2

]
|
n=n̂

= g̈0|n=0 + e
[
g̈1 − X1...g0 − Ẍ1ġ0

]
|n=0 + O(e2). (30)

The boundary conditions at y = 0 become

g0|n=0 = 0, g1 − X1ġ0|n=0 = 0, · · · (31)

g̈0|n=0 = 0, g̈1 − X1...g0 − Ẍ1ġ0|n=0 = 0, · · · . (32)

Using Eqs. (26)–(27) and Eqs. (31)–(32), the solution for Eq.
(21) can be obtained as follows:

g0 = sin
(
p

2
n

)
� sin h, (33)

where h = p
2 n and k0 = − p2

4 . Substituting Eq. (33) into
Eq. (22) yields the equation for g1:

sin hg′′
1(h)−2 cos hg′

1(h) − sin hg1(h) =

(
p

2
− 4a

p
+

2M2

p

)
cos h

−2Ẋ1(n) +
2a
p

h sin h +
4
p2

k1, (34)

where ′ denotes the derivative with respect to h. To elim-
inate the singularity that may appear in g1, we can set

(
p

2
− 4a

p
+

2M2

p

)
cos h − 2Ẋ1(n) +

2a
p

h sin h +
4
p2

k1 = 0.

(35)

Obviously, from Eq. (35), one can obtain

X1(h) =

(
1
2

− 2a
p2

+
2M2

p2

)
sin h − 2a

p2
h cos h +

4k1

p3
h + C1,

(36)

where C1 is an integration constant. At this juncture, Eq. (34)
becomes

sin hg ′′
1 (h) − 2 cos hg ′

1(h) − sin hg1(h) = 0. (37)

According to [9], for the general homogeneous Eq. (37), its
solution can be shown as follows:

g1(h) = K1 cos h + K2(sin h − h cos h), (38)

where K1 and K2 are integration constants. Applying bound-
ary conditions (26)–(27) and (31)–(32), one obtains

K1 =
p

2
C1, K2 = 0. (39)

When considering the non-zero solution of g1 and setting
C1 = 1, we can obtain

g1 =
p

2
cos h, k1 = −p2

4
+ a − M2. (40)
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Table 1
Asymptotic and numerical values of −f

′ ′
(1) for large injection Reynolds numbers.

a = −2, M = 2 a = 2, M = 2 a = 2, M = 0

Re Eq. (41) Numerical Eq. (41) Numerical Eq. (41) Numerical Majdalani et al. [9]

100 2.5532 2.5796 2.4647 2.4639 2.4401 2.4317 2.5041
150 2.5245 2.5420 2.4655 2.4651 2.4489 2.4434 2.4919
200 2.5102 2.5232 2.4660 2.4657 2.4535 2.4493 2.4858
250 2.5016 2.5120 2.4662 2.4660 2.4562 2.4529 2.4821
300 2.4959 2.5046 2.4664 2.4663 2.4580 2.4553 2.4796

Finally, by combining Eq. (40) with Eq. (33), the resulting
solution f(y) becomes as follows:

f ( y) = sin
(
p

2
n

)
+ e

p

2
cos

(
p

2
n

)
, (41)

where y = n + e
[(

1
2 − 2a

p2 + 2M2

p2

)
sin

(
p
2 n

) − a
p n cos

(
p
2 n

)
+(

1
2 − 2a

p2 + 2M2

p2

)
n + 1

]
.

To verify the validity of the asymptotic solution (41), Table 1 not
only presents the comparison between asymptotic and numerical
solutions (see M = 2; a = ±2), but also shows the comparison our
results with the analytical solution obtained by Majdalani et al. [9]
for a = 2, M = 0. As observed from Table 1, the last three columns
indicate that our asymptotic results are closer to numerical results
in comparison to ones obtained by Majdalani et al. In a sense, this
also illustrates that applying the Lighthill method is reliable for large
injection. Therefore, we hope that it can be extended to the similar
flow problems.

3.2. Solution for large suction Reynolds numbers

For large suction, under M = 0 Majdalani et al. [8,9] have pointed
out the existence of thinning boundary layer. Here we not only con-
sider the boundary layer, but also further extend to the case M2 =
O(Re). For added clarity, this section is divided into two parts: the
first part– a = O(1) and M2 = O(1) as Re → −∞, and the second
part – a = O(1) and M2 = O(Re) as Re → −∞.

A. a = O(1) and M2 = O(1) as Re → −∞
As mentioned before, a viscous boundary layer is formed
near the walls of the channel. To better describe it, the
method of boundary layer correction (Noting that the reader
can see [42–44] for more detail on this method) is used to
deal with it. The specific process is as follows:
We define e = 1

Re to be our perturbation parameter, and set
f′(0) = b and f

′ ′ ′
(0) = d, then Eq. (13) can be written as

ef ′′′ +ea( yf ′′ +2f ′)+( f f ′′ −f ′2)−eM2f ′ = ed+2eab−b2 −eM2b,

(42)

where ek = ed + 2eab − b2 − eM2b.
We introduce a variable transformation of the form

1 − y = et, (43)

and expand the function f into a composite form as follows:

f ( y) = f0( y) + e(f1( y) + g1(n)) + e2(f2( y) + g2(n))

+ e3(f3( y) + g3(n)) + O(e4). (44)

Noting that gi(n), i = 1, 2, · · ·, are boundary layer functions
and rapidly decay when y is away from the walls. In addition,
the constants b, d can be written as follows:

b = b0 + eb1 + e2b2 + e3b3 + O(e4)

d = d0 + ed1 + e2d2 + e3d3 + O(e4)

}
. (45)

Using Eqs. (43)–(45), the boundary conditions in Eq. (14)
become

f (0) = 0, f ′′(0) = 0 ⇒ fi|y=0 = 0, f ′′
i |y=0 = 0, i = 0, 1, 2, · · ·

(46)

f (1) = 1 ⇒ f0|y=1 = 1, fi|y=1 + gi|t=0 = 0, i = 1, 2, · · · (47)

f ′(1) = 0 ⇒ f ′
i |y=1 − ġi+1|t=0 = 0, i = 0, 1, 2, · · · (48)

Here ′ and • denote the derivatives with respect to y and
t, respectively. Substituting Eqs. (44)–(45) into Eq. (42) and
equating coefficients of en, one can obtain

f0f ′′
0 − f ′2

0 = −b2
0. (49)

The corresponding boundary conditions become

f0|y=0 = 0, f ′′
0 |y=0 = 0, f0|y=1 = 1. (50)

As a result, we have

f0 = y, b0 = 1. (51)

For g1, the equation becomes

−...g1 + g̈1 = 0, (52)

and the corresponding boundary condition becomes

ġ1|t=0 = f ′
0|y=1 = 1. (53)

According to the character of the boundary function, the
expression of g1 should be

g1 = et. (54)

Next, we have the following equation:

yf ′′
1 − 2f ′

1 = −2b1, (55)
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and the corresponding boundary conditions are as follows:

f1|y=0 = 0, f ′′
1 |y=0 = 0, f1|y=1 = −g1|t=0 = −1. (56)

From Eqs. (55)–(56), we can obtain the following results:

f1 = −y, b1 = −1. (57)

At this juncture, for g2, the boundary condition becomes

ġ2|t=0 = f ′
1|y=1 = −1. (58)

On the other hand, the corresponding equation becomes

−...g2 + g̈2 + aet + et − tet = 0. (59)

So we can obtain

g2 = et
[
− 1

2
t2 + (a + 3)t − (a + 4)

]
. (60)

Following the process above, we can easily obtain the fol-
lowing results:

f2 = (a + 4)y, (61)

f3 =
(

−a2 − 11a + M2 − 129
4

)
y, (62)

g3 = − 1
4

e2t + et
[

1
8
t4 − 1

2
(a + 3)t3 +

(
1
2
a2 + 3a + 9

)
t2

+
(
−a2 − 10a + M2 − 28

)
t + a2 + 11a − M2 +

65
2

]
.

(63)

Finally, the composite solution f becomes as follows:

f = y + e
{−y + et

}
+ e2

{
(a + 4)y + et

×
[
− 1

2
t2 + (a + 3)t − (a + 4)

]}

+ e3
{(

−a2 − 11a + M2 − 129
4

)
y − 1

4
e2t

+ et
[

1
8
t4 − 1

2
(a + 3)t3 +

(
1
2
a2 + 3a + 9

)
t2

+ (−a2 − 10a + M2 − 28)t + a2 + 11a − M2 +
65
2

]}
.

(64)

A comparison of −f
′ ′
(1) between our results and Majdalani

et al. [9] is presented in Table 2. As observed, we can find
that the biggest error occurs in the case a = −20 and M =
52. This is because M2 is too large to meet the assumption
M2 = O(1). So, in the next section we will consider the case
M2 = O(Re).

B. a = O(1) and M2 = O(Re) as Re → −∞
Since M2 = O(Re) and r = − M2

Re , we can derive r ∼ O(1). In
addition, we denote e = 1

Re , f′(0) = b, and f
′ ′ ′

(0) = d. Eq.
(13) can be written as

ef ′′′ +ea( yf ′′ +2f ′)+( f f ′′ − f ′2)+rf ′ = ed+2eab−b2 +rb,

(65)

where ek = ed+2eab−b2 + rb. Following the procedure in
Part A, we can induce the expressions for fi and gi as follows:

f0 = y, (66)

f1 = −y, (67)

f2 = (a + 4 − r)y, (68)

f3 =
(

−a2 − 11a + 3ar − 2r2 + 15r − 129
4

)
y, (69)

g1 = et , (70)

g2 = et
[
− 1

2
t2 + (a + 3 − r)t − (r − a − 4)

]
, (71)

g3 = − 1
4

e2t + et
[

1
8
t4 +

1
2

(r − a − 3)t3

+
(

1
2
a2 + 3a − ar +

1
2

r2 − 4r + 9
)
t2

+(−a2 − 10a + 3ar − 2r2 + 14r − 28)t

+ a2 + 11a − 3ar + 2r2 − 15r +
65
2

]
. (72)

Table 2
Asymptotic and numerical values of −f

′ ′
(1) for a = O(1) and M2 = O(1).

a = 8, M = 4 a = −15, M = 0 a = −20, M = 52

Re Eq. (64) Numerical Eq. (64) Numerical Majdalani et al. [9] Eq. (64) Numerical

−194 184.9253 184.9164 208.1985 208.1870 208.0001 227.2139 225.4485
−236 226.9386 226.9320 250.1631 250.1559 250.0001 266.6843 265.5398
−452 442.9679 442.9625 466.0852 466.0798 466.0000 477.1007 476.8267
−561 551.9742 551.9714 575.0686 575.0661 575.0000 584.9153 584.7459
−617 607.9765 607.9729 631.0624 631.0594 631.0000 640.4692 640.3300
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Table 3
Asymptotic and numerical values of −f

′ ′
(1) for a = O(1) and M2 = O(Re).

a = 8, M = 23 a = −5, M = 31 a = −20, M = 52

Re Eq. (73) Numerical Eq. (73) Numerical Eq. (73) Numerical

−194 187.7140 187.7109 202.8709 202.8725 225.1348 225.4485
−236 229.2145 229.2110 244.0378 244.0368 265.3998 265.5398
−452 444.1335 444.1283 458.1349 458.1302 476.8230 476.8267
−561 552.9089 552.9061 566.7229 566.7207 584.7450 584.7459
−617 608.8248 608.8212 622.5674 622.5642 640.3315 640.3300

As a result, the composite solution of Eq. (65) becomes as
follows:

f =y + e{−y + et} + e2
{

(a + 4 − r)y + et
[
− 1

2
t2

+ (a + 3 − r)t − (r − a − 4)
]}

+ e3
{(

−a2 − 11a

+3ar − 2r2 + 15r − 129
4

)
y − 1

4
e2t + et

[
1
8
t4

+
1
2

(r − a − 3)t3 +
(

1
2
a2 + 3a − ar +

1
2

r2 − 4r + 9
)
t2

+(−a2 − 10a + 3ar − 2r2 + 14r − 28)t

+
(
a2 + 11a − 3ar + 2r2 − 15r +

65
2

)]}
. (73)

When comparing Eq. (73) with Eq. (64), we can find that the
Hartmann number M initially appears in the term O(e2) for
this case, which indicates the increase of the magnetic field’s
effect on the solution. We can observe that the asymptotic
solution Eq. (73) becomes more accurate for a = −20 and
M = 52 (see Tables 2–3).

3.3. Solution for large Hartmann numbers

In this section, we consider the case that the intensity of the mag-
netic field is large enough so that the magnetic field force is the main
influence factor.

We treat e = 1
M2 as the perturbation parameter and denote b =

f′(0) and d = f
′ ′ ′

(0), then Eq. (13) can be written as

ef ′′′ +ea( yf ′′ +2f ′)+eRe( f f ′′ − f ′2)− f ′ = ed+2eab−eReb2 −b, (74)

where ek = ed + 2eab − eReb2 − b.

A. Inner solution
As said by Terrill et al. [22,23], when a = 0, large Hartmann
number M would result in the appearance of a bound-
ary layer near the wall. To obtain a solution within the
boundary layer, an appropriate stretching transformation is
introduced as follows:

n =
1 − y
ea , (75)

f ( y) = 1 + ebg(n), (76)

where a and b are constants that will be determined later.
Substituting Eqs. (75)–(76) into Eq. (74) yields

−e1+b−3a...g + e1+b−2aAg̈ − e1+b−aa(ng̈ + 2ġ)

+e1+2b−2aRe(gg̈ − ġ2) + eb−aġ = ed + 2eab − eReb2 − b,
(77)

where • denotes the derivative with respect to n and A =
a + Re.
As expected, the magnetic boundary layer involves a balance
between viscous and magnetic terms. Thus we set 1 + b −
3a = b − a, which indicates a = 1

2 . Besides, because of the
balance of the order of magnitude on both sides of Eq. (77),
we have b = a = 1

2 . At this juncture, Eq. (77) becomes

−...g + e
1
2 Ag̈ − ea(ng̈ + 2ġ) + eRe(gg̈ − ġ2) + ġ

= ed + 2eab − eReb2 − b. (78)

g(n), b and d are expanded as follows:

g(n) = g0(n) + e
1
2 g1(n) + eg2(n) + e

3
2 g3 + O(e2),

b = b0 + e
1
2 b1 + eb2 + e

3
2 b3 + O(e2),

d = d0 + e
1
2 d1 + ed2 + e

3
2 d3 + O(e2).

⎫⎪⎪⎬
⎪⎪⎭ (79)

Substituting Eq. (79) into Eq. (78) and equating coefficients
of ei, one can obtain

e0 : −...g0 + ġ0 = −b0, (80)

e
1
2 : −...g1 + ġ1 + (a + Re)g̈0 = −b1, (81)

e : −...g2 + ġ2 + (a + Re)g̈1 − a(ng̈0 + 2ġ0)

+Re(g0g̈0 − ġ0
2) = d0 + 2ab0 − Reb2

0 − b2, (82)

e
3
2 : −...g3 + ġ3 + (a + Re)g̈2 − a(ng̈1 + 2ġ1)

+Re(g0g̈1 + g1g̈0 − 2ġ0ġ1) = d1 + 2ab1 − 2Reb0b1 − b3,
(83)

· · · · · · .
The boundary conditions for gn become

gn(0) = 0, ġn(0) = 0; n = 0, 1, 2, · · · . (84)

The solution of Eq. (80), subject to the boundary conditions
in Eq. (84), is

g0 = −b0e−n − b0n + b0. (85)

Using Eq. (85), the solution of Eq. (81) satisfying the bound-
ary conditions in Eq. (84) is

g1 = e−n

(
− 1

2
Ab0n − 1

2
Ab0 − b1

)
− b1n +

(
b1 +

1
2

Ab0

)
.

(86)
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Furthermore, the expressions of g2 and g3 become

g2 =e−n

[(
1
4
ab0 − 1

8
A2b0 +

1
4

Reb2
0

)
n2 +

(
− 1

4
ab0

− 1
8

A2b0 − 1
2

Ab1 +
5
4

Reb2
0

)
n +

5
4

Reb2
0 − 1

2
Ab1

− 1
4
ab0 − 1

8
A2b0 + d0 − b2

]
+ (d0 − b2)n +

(
1
4
ab0

− 5
4

Reb2
0 +

1
2

Ab1 − d0 + b2 +
1
8

A2b0

)
, (87)

g3 =e−n

[(
1
8

Aab0 +
1
8

AReb2
0 − 1

48
A3b0

)
n3 +

(
− 1

8
A2b1

+
1
4
ab1 +

1
2

Reb0b1 +
5
8

AReb2
0 − 1

8
Aab0

)
n2

+
(

− 1
4
ab1 − 3

8
Aab0 − 1

2
Ab2 +

5
2

Reb0b1 − 1
8

A2b1

+
1
2

Ad0 +
9
8

AReb2
0

)
n +

(
−b3 + d1 +

5
2

Reb0b1

− 3
8

Aab0 +
1
2

Ad0 − 1
4
ab1 − 1

8
A2b1 +

9
8

AReb2
0

− 1
2

Ab2

)]
+ (−b3 + d1)n +

(
b3 − d1 +

3
8

Aab0

+
1
4
ab1 +

1
8

A2b1 − 1
2

Ad0 − 9
8

AReb2
0 +

1
2

Ab2 − 5
2

Reb0b1

)
.

(88)

Hence, the inner perturbation solution of Eq. (74) can be
expressed as

f (i) = 1 + e
1
2 g0 + eg1 + e

3
2 g2 + e2g3 + O(e

5
2 ), (89)

where the coefficients bn and dn(n = 0, 1, · · ·) are to be
determined by the matching process in Part C.

B. Outer solution
The outer solution of Eq. (74) satisfies the inviscid equation

f ′ = b, (90)

and the corresponding outer boundary conditions become

f (0) = 0, f ′′(0) = 0. (91)

Thus the outer solution f(o)(y) is

f (o)( y) = by, (92)

where b = b0 + e
1
2 b1 + eb2 + e

3
2 b3 + e2b4 + O

(
e

5
2

)
.

C. Matching process
If Eq. (92) is written in terms of the inner variable n, then

f (o)i =
(
b0 + e

1
2 b1 + eb2 + e

3
2 b3 + e2b4

)
− e

1
2

(
b0 + e

1
2 b1 + eb2 + e

3
2 b3

)
n + · · · . (93)

When n → ∞, we can obtain

b0 = 1, b1 = 1, b2 = 1+
1
2

A, b3 =
1
8

A2 +
3
4

(a−Re)+1,

(94)

Table 4
Asymptotic and numerical values of −f

′ ′
(1) for large Hartmann numbers.

a = 5, Re = 10 a = −5, Re = 25 a = 25, Re = −50

M Eq. (96) Numerical Eq. (96) Numerical Eq. (96) Numerical

55 49.0888 49.0885 47.3231 47.3119 68.8821 68.8782
83 76.8921 76.8924 74.8797 74.8769 96.7608 96.7590
108 101.8021 101.8024 99.6771 99.6760 121.7030 121.7019
200 193.6637 193.6639 191.3665 191.3665 213.6118 213.6114
324 317.6012 317.6013 315.2265 315.2265 337.5696 337.5695

b4 =
1
2

A2 +
3
8

A(a−3Re) +
3
2
a− 11

4
Re + 1, d0 = 0, d1 = 0.

(95)

As a result, the complete solution of Eq. (74) satisfying the
boundary conditions in Eq. (14) can be obtained as follow:

f =f (o) + f (i) − f (o)i = 1 + e
1
2 {−e−n − n + 1}

+ e

{
e−n

(
− 1

2
An − 1

2
A − 1

)
− n +

1
2

A + 1
}

+ e
3
2

{
e−n

[(
1
4
a +

1
4

Re − 1
8

A2
)
n2 +

(
− 1

4
a +

5
4

Re

− 1
8

A2 − 1
2

A
)
n +

(
− 1

4
a +

5
4

Re − 1
8

A2 − A − 1
)]

−
(

1 +
1
2

A
)
n +

(
1
4
a − 5

4
Re +

1
8

A2 + A + 1
)}

+ e2
{

e−n

[(
− 1

48
A3 +

1
8

A2
)
n3 +

(
− 1

8
A2 +

5
8

ARe

− 1
8

Aa +
1
4
a +

1
2

Re
)
n2 +

(
− 3

8
A2 − 3

8
Aa +

9
8

ARe

− 3
4
a + 2Re

)
n +

(
− 1

2
A2 − 3

8
Aa +

9
8

ARe − 3
2
a

+
11
4

Re − 1
)]

−
(

1
8

A2 +
3
4
a − 3

4
Re + 1

)
n +

1
2

A2

+
3
8

A(a − 3Re) +
3
2
a − 11

4
Re + 1

}
. (96)

As seen in Table 4, the asymptotic results agree well with
the numerical ones no matter whether the parameters (i.e.
a and Re) are positive or negative.

3.4. Solution for large wall contraction ratios

In this section, we take into account the leading influence of wall
contraction ratio a on the flow, and treat e = − 1

a as the perturbation
parameter. Then Eq. (13) becomes

−ef ′′′+( yf ′′+2f ′)−eRe( f f ′′−f ′2)+eM2f ′ = −ed+2b+eReb2+eM2b,

(97)

where −ed + 2b + eReb2 + eM2b = −ek. When M = 0, Majdalani
et al. [8] pointed out that the effect of large contraction ratio on flow
behaviour was the same as that of large suction on flow behaviour.
Thus, following the procedure outlined in Section 3.2, we introduce
the stretching transformation of the form

n =
1 − y
e

, f ( y) = 1 + eg(n). (98)
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Then Eq. (97) becomes

e−1(...g + g̈) − (ng̈ + 2ġ + Reg̈) − eRe(gg̈ − ġ2) − eM2ġ

= −ed + 2b + eReb2 + eM2b, (99)

here • denotes differentiation with respect to n. Substituting Eq. (79)
into Eq. (99) and equating coefficients of en yields

e−1 : ...g0 + g̈0 = 0, (100)

e0 : ...g1 + g̈1 − (n + Re)g̈0 − 2ġ0 − 2b0 = 0, (101)

e : ...g2 + g̈2 − (n + Re)g̈1 − 2ġ1 − Re(g0g̈0 − ġ0
2) − M2ġ0

= −d0 + 2b1 + Reb2
0 + M2b0, (102)

e2 : ...g3 + g̈3 − (n + Re)g̈2 − 2ġ2 − Re(g0g̈1 + g1g̈0 − 2ġ0ġ1) − M2ġ1

= −d1 + 2b2 + 2Reb0b1 + M2b1, (103)

· · · · · · .

The corresponding boundary conditions become

gn(0) = 0, ġn(0) = 0; n = 0, 1, 2, · · · . (104)

The outer solution f(o) = by can be expressed in terms of the inner
variable n:

f (o)i = (b0 + eb1 + e2b2 + e3b3)− e(b0 + eb1 + e2b2)n+ · · · · · · (105)

By solving Eq. (100), one can obtain

g0 = C1(e−n + n − 1). (106)

We can obtain C1 = −1,b0 = 1, and b1 = 1 using the matching
process. Similarly, g1, g2 and g3 can be derived as follows:

g1 = e−n

(
− 1

2
n2 − Ren − C2

)
+ (Re − C2)n + C2, (107)

g2 = e−n

[
− 1

8
n4 − 1

2
Ren3 − 1

2
(Re2 + 1)n2 + (−Re2 + 2Re + M2)n − C3

]

− 1
2
d0n

2 + (Re2 − 2Re − M2 − C3)n + C3, (108)

g3 =e−n

[
− 1

48
n6 − 1

8
Ren5 +

(
− 1

4
Re2 +

1
8

Re − 1
8

)
n4 +

(
− 1

6
Re3 + Re

+
1
2

M2
)
n3 +

(
− 1

2
Re3 +

5
2

Re2 +
7
2

Re + ReM2 + M2 − 1
2

)
n2

+
(
−Re3 + 7Re2 + 9Re + 3ReM2 + 2M2

)
n +

1
4

Re − C4

]
− 1

4
e−2nRe

− 1
2
d1n

2 +
(

Re3 − 7Re2 − 37
4

Re − 3M2Re − 2M2 − C4

)
n + C4,

(109)

where C2 = b2 = Re+1, C3 = b3 = Re2−Re+1−M2 and C4 = b4 =
Re3 −7Re2 − 37

4 Re−3M2Re−2M2. Finally, the complete solution of Eq.
(97), subject to the boundary conditions in Eq. (14), can be expressed
as

f =f (o) + f (i) − f (o)i = 1 + e{−e−n − n + 1} + e2
{

e−n

(
− 1

2
n2 − Ren

−Re − 1
)

− n + Re + 1
}

+ e3
{

e−n

[
− 1

8
n4 − 1

2
Ren3 − 1

2
(Re2 + 1)n2

+ (−Re2 + 2Re + M2)n − (Re2 − Re + 1 − M2)
]

+ (−Re − 1)n

+ (Re2 − Re + 1 − M2)
}

+ e4
{
− 1

4
e−2nRe + e−n

[
− 1

48
n6 − 1

8
Ren5

+
(

− 1
4

Re2 +
1
8

Re − 1
8

)
n4 +

(
− 1

6
Re3 + Re +

1
2

M2
)
n3

+
(

− 1
2

Re3 +
5
2

Re2 +
7
2

Re + ReM2 + M2 − 1
2

)
n2

+
(
−Re3 + 7Re2 + 9Re + 3ReM2 + 2M2

)
n + −Re3

+ 6Re2 +
21
2

Re + 3M2(Re + 1) − 1
]

+ (−Re2 + Re + M2 − 1)n

+
(

Re3 − 6Re2 − 41
4

Re − 3M2Re − 3M2 + 1
)}

. (110)

A comparison of −f
′ ′
(1) between the asymptotic and numerical

solutions is shown in Table 5. When a is large, the asymptotic results
have a good match with the numerical results.

4. Comparison of the numerical and asymptotic solutions and
discussion

The main aim of this section is to present a comparison of the
numerical and asymptotic solutions and some discussion. For the
former, the BVP (i.e. Eqs. (13) and (14)) has to be solved numer-
ically. Here we use bvp4c of Matlab to solve it [45]. In addition,
unless stated otherwise, for all our computations with bvp4c, we use
the default relative error tolerance 10−3 and the default absolute
error tolerance 10−6. On the other hand, we will compare asymptotic
results with numerical results to verify the accuracy of asymptotic
solutions constructed in Section 3. A number of possible ways on the
comparison are available, e.g. by comparing f(y), f′(y) proportional to
the flow velocity, f

′ ′
(1), related to the skin-friction at the walls, etc.

In [46] Terrill pointed out that the comparison of f
′ ′
(1) was found to

be the most effective way. Here we will follow his line, and the cor-
responding values of −f

′ ′
(1) with the different ranges of the control

parameters are presented in Tables 1-5.
To develop a better understanding of the flow character, in the

following section we not only graphically show the axial velocity
profiles f′(y) over different ranges of the control parameters a, Re
and M, but also further give some discussion on the effects of these
parameters on flow behaviour.

When Re = 600, Fig. 2 illustrates the behaviour of the self-similar
axial velocity f′(y) for expansion ratio a = −2 and 2, respectively,
over a range of dimensionless Hartmann number M. In Fig. 2a, an ini-
tial glance indicates that the effect of varying M on the axial velocity
f′(y) is not obvious. That is because for this case, the incompressible
fluid injecting from the walls of the channel is mainly to deter-
mine the flow behaviour in comparison with the magnetic field and
the wall deformation. When the Reynolds number is increased, the
axial velocity distribution approaches a cosine profile (see Eq. (41) in
Section 3), specifically

f ′( y) = cos(
p

2
y); Re → +∞. (111)
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Table 5
Asymptotic and numerical values of −f

′ ′
(1) for large contraction ratios.

M = 5, Re = −25 M = 23, Re = 31 M = 10, Re = −32

a Eq. (110) Numerical Eq. (110) Numerical Eq. (110) Numerical

−150 176.7329 176.7233 125.9956 125.9916 184.0278 184.0286
−220 246.8064 246.8012 194.2248 194.2285 254.0216 254.0197
−300 326.8532 326.8509 273.2889 273.2891 334.0170 334.0160
−500 526.9088 526.9069 472.3232 472.3190 534.0109 534.0093
−654 680.9294 680.9247 625.9981 625.9954 688.0085 688.0038

a) b)

Fig. 2. Comparison between numerical and asymptotic solutions for f′(y) at a) a = −2, and b) a = 2; Re = 600.

Eq. (111) has often been called “Taylor’s profile” due to its rele-
vance to several applications including paper manufacture and gas
separation. With the comparison of asymptotic and numerical solu-
tions, an error appears with Hartmann number M. Also the error
increases as M increases. That is because the asymptotic solution
constructed in Section 3.1 is only suitable for small Hartmann num-
ber (i.e. M2 = O(1)), which can be verified by the case M = 0.
Meanwhile, as seen in Fig. 2a, the largest error seems to occur near
the center of the channel for a fixed M. When a = 2, similar
conclusions can be drawn (see Fig. 2b).

Fig. 3 presents the self-similar axial velocity f′(y) for large suc-
tion. In this case, since sufficiently large suction can dominate over
wall expansion and magnetic filed, the suction region formed near
the closed head-end causes the incompressible fluid entering from
the right side of the channel to move farther upstream to the walls
along the wall-normal direction. Here the non-slip condition (i.e.
f′(1) = 0 in Eq. (14)) is also considered by us. As a result, the axial
velocity profile becomes a spatially uniform value 1 near the cen-
ter of the channel while appearing a thinning boundary layer near
the walls of the channel. Moreover, from Eq. (43) in Section 3.2, we

can obtain that the boundary layer has a thickness of O(e). In addi-
tion, in Fig. 3, we also see the comparison between numerical and
asymptotic solutions for f′(y). The magnified graph indicates that a
better agreement can be realized as M → 0, and the error increases
as M increases. However, on the whole, the accuracy of the asymp-
totic solution (i.e. Eq. (64) in Section 3.2) is reliable. By recalling
Eqs. (64) and (73), the asymptotic solution ultimately collapses into
the essentially irrotational form, namely,

f ( y) = y + O(Re−1); Re → −∞. (112)

Such behaviour is also consistent with Majdalani et al. [9] and Hang
Xu et al. [11] in the absence of magnetic field.

To study the self-similar axial velocity sensitivity to M, the expan-
sion ratio is held constant at a = −2 and a = 2 for a fixed Re = 1
(see Fig. 4). When the walls of the channel were motionless, Ter-
rill and Shrestha [22] pointed out that a magnetic boundary layer
existed near the walls if Re was small and M was large. Further if
Re(< 0) and M were both large, then the flow near the walls would

a) b)

Fig. 3. Comparison between numerical and asymptotic solutions for f′(y) at a) a = −2, and b) a = 2; Re = −600.
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a) b)

Fig. 4. Comparison between numerical and asymptotic solutions for f′(y) at a) a = −2, and b) a = 2.

consist of a combined magnetic and suction boundary layer. As pre-
dicted by them, here we do find the existence of a magnetic boundary
layer (see M = 200). Moreover, considering the balance between
viscous and magnetic terms, we also obtain that the thickness of the
magnetic boundary layer is O(e

1
2 ), which is different from the result

included in Section 3.2. In addition, for M = 200, when Re is var-
ied from 1 to 20, both numerical (−) and asymptotic (· · · ) solutions
are compared. The results are found to be in very well agreement,
which indicates that the accuracy of the asymptotic solution Eq. (96)
is reliable.

When Re = 1, 15 and M = 0, for varying a, the correspond-
ing self-similar axial velocity profiles are plotted in Fig. 5. It may be
interesting to note that the special case M = 0 and a = 0, where
the value of f′(0) is near 1.5 and the self-similar axial velocity pro-
file is parabolic. Such behaviour is consistent with one in the fully
developed Hagen-Poiseuille flow. As a is varied from 0 to −200, a
boundary layer is gradually formed. That is because the rapid volu-
metric contraction of the walls causes the incompressible fluid near
the closed head-end to rapidly move towards the right side of the
channel. When comparing Fig. 3 with Fig. 5, we can conclude that
they have some similar phenomena, e.g. from Eq. (98), the thickness
of the boundary layer is O(e), and is equal to one for large suction.
when M = 0, to describe the similar effects of large suction and large
contraction on flow behaviour, Majdalani et al. [8] have even defined
an effective suction Reynolds number, that is,

Rs = −(Re + a), (113)

which combined the effect of the suction with the one of the wall
contraction. On the other hand, for a = −200, as M is varied

from 0 to 20, both numerical (−) and asymptotic (· · · ) solutions
are compared. Obviously, the accuracy of the asymptotic solution
Eq. (110) is reliable, and the precision extends to 3 significant
figures.

5. Conclusions

In this paper, for the BVP Eqs. (13) and (14), we have constructed
asymptotic solutions for different ranges of the control parameters.
Based on numerical solutions with bvp4c, the accuracy of these
asymptotic solutions is also easily verified. On the other hand, by dis-
cussing the effects of the control parameters on the flow behaviour,
some conclusions may be summarized as follows:

i) For large injection, the axial velocity profile is still parabolic
when M2 = O(1).

ii) The Lighthill method has been successfully used to eliminate
the singularity of the higher order derivatives.

iii) Whether the situation is large suction, large Hartmann num-
ber or large contraction ratio, the boundary layer can always
be found, but the corresponding thicknesses are different.
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