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 A B S T R A C T

Numerous practical problems give rise to nonlinear differential equations that may exhibit 
multiple nontrivial solutions relevant to applications. Efficiently computing these solutions is 
crucial for a profound understanding of these problems and enhancing various applications. 
Therefore, the development of a numerical method capable of finding multiple solutions 
efficiently is imperative. Additionally, the provision of an efficient iteration process is vital for 
promptly obtaining multiple solutions. In the current paper, we introduce a novel algorithm for 
identifying multiple solutions of semilinear elliptic systems, where the trust region Levenberg–
Marquardt method, combined with the deflation technique, is designed to compute multiple 
solutions for the first time. Based on several numerical experiments, our algorithm demonstrates 
efficacy in efficiently identifying multiple solutions, even when the nonlinear term appearing 
in these equations involves solely the first derivative. Moreover, we validate the efficiency of 
our algorithm and unveil previously undiscovered solutions in the existing literature

1. Introduction

Many nonlinear differential equations arising from practical problems permit multiple nontrivial solutions, which can be observed 
in physics, mechanics, biology, energy and engineering and so on. The in-depth study of multiple solutions is helpful to improve the 
understanding and application of these problems [1–3]. It is worth pointing out that most of these equations do not have explicit 
solutions. Moreover, the PDE theory only provides some powerful analytic solution techniques for special cases, such as the radial 
symmetrical case. Therefore, the development of efficient numerical methods to find multiple solutions will be very meaningful and 
is attracting the attention of many studies around the world.

Recently, in [4], we proposed a spectral trust-region deflation method for finding multiple solutions of a single nonlinear 
equation. For some coupled nonlinear equations with multiple solutions, the spectral trust-region deflation method presented in [4] 
does not seem to be very effective without any further improvement. To be specific, we identify multiple solutions to the following 
problem 

− 𝛥𝒖⃗ = 𝐺⃗(𝒙, 𝒖⃗), 𝒙 ∈ 𝛺 (1.1)
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supplemented with some boundary conditions, where 𝛺 is a bounded domain in R𝑑 , 𝑑 = 1, 2,…, and 𝐺⃗ is a nonlinear vector function 
of 𝒖⃗. Compared to identifying multiple solutions of a single nonlinear equation, efficiently identifying multiple solutions of (1.1) will 
be more challenging due to the substantial increase in the number of discrete unknown variables. For example, when considering 
the case 𝑑 = 2, 𝒖⃗ ∶= (𝑢, 𝑣) with homogeneous Dirichlet boundary conditions, we assume that the numerical solution (denoted by 
𝑢𝑁 (𝑥, 𝑦) and 𝑣𝑁 (𝑥, 𝑦)) is expanded as 

𝑢𝑁 (𝑥, 𝑦) =
𝑁
∑

𝑖,𝑗=0
𝑢̃𝑖𝑗𝜙𝑖(𝑥)𝜙𝑗 (𝑦) and 𝑣𝑁 (𝑥, 𝑦) =

𝑁
∑

𝑖,𝑗=0
𝑣̃𝑖𝑗𝜙𝑖(𝑥)𝜙𝑗 (𝑦), (1.2)

where 𝜙𝑖(𝑥) = 𝐿𝑖(𝑥) − 𝐿𝑖+2(𝑥), 𝐿𝑖(𝑥)(0 ≤ 𝑖 ≤ 𝑁 + 2) are Legendre polynomials, and {𝑢̃𝑖𝑗} and {𝑣̃𝑖𝑗} are expanding coefficients to be 
solved. From (1.2), we need to solve 2(𝑁 + 1)2 unknown variables. The computational complexity will increase dramatically with 
increasing 𝑁 , indicating that identifying multiple solutions of (1.1) (or solving these unknown variables in (1.2)) will become more 
and more difficult. On the other hand, for certain coupled partial differential equations (PDEs) with multiple solutions, including 
the two types of noncooperative systems in [5], the function 𝐺⃗ ∈ 𝐶1[−1, 1] defined in (1.1) is only satisfied under specific parameter 
conditions. The algorithms utilizing second derivative information cannot support multiple solutions of (1.1), including the spectral 
trust-region deflation method given in [4]. Therefore, in the current paper, our aim is to improve the spectral trust-region deflation 
method presented in [4], and to design a new numerical method for finding multiple solutions of (1.1) efficiently.

Before we introduce our approach, it is necessary to elaborate on the relevant background and motivations. In 1993, Choi and 
Mckenna [6] proposed the mountain pass algorithm (MPA) for multiple solutions of semilinear elliptic problems. Subsequently, 
in [7], Xie et al. pointed out that the MPA was feasible for finding two solutions of mountain pass type with Morse index 1 or 0. 
However, as said in [8], the MPA may fail to locate the sign-changing solutions, where Ding et al. proposed a high linking algorithm 
(HLA) for such solutions. In 2001, Li and Zhou [9] proposed the minimax algorithm (MNA) for finding multiple solutions of nonlinear 
equations, and more recent advancements are presented in [10–13]. It is worth pointing out that all of these methods above require 
that nonlinear differential equations have a variational structure, where the variational structure plays an important role in designing 
the algorithm to find multiple solutions. However, many differential equations with multiple solutions have no variational structure, 
which makes the methods above not applicable. This also leads to the second category of the existing methods for multiple solutions, 
i.e., some numerical methods (e.g., spectral method or finite difference) are used to discretize differential equations with multiple 
solutions. Then, some iterative methods are provided to find multiple solutions of the resulting nonlinear algebraic system (NLAS). 
Along this line, the search-extension method (SEM) was proposed by Xie et al. [14], and some improvements to SEM have been 
found in [15,16]. In [17,18], with the finite difference discretization, Allgower et al. proposed the homotopy continuation method 
for finding multiple solutions of the NLAS, and some interesting recent works have been inspired by this method, e.g. [19–21]. 
It is worth pointing out that in these methods, the Newtonian method is often chosen to iterate the NLAS with an initial guess. 
However, as we know, the main disadvantage of the Newtonian method is that the iteration is sensitive to the initial guess, and 
the inverse of the Jacobian matrix should exist. In [4], we first used the trust-region method to replace the Newtonian method for 
finding multiple solutions, where numerical results concerning computational efficiency have been greatly improved. This indicates 
that the trust-region method is worthy of extensive application in computing multiple solutions. However, if the trust-region method 
presented in [4] is directly used to iterate the NLAS arising from (1.1), the computational efficiency will be greatly affected due 
to the expensive computational cost of the Hessian matrix. More importantly, if the Hessian matrix does not exist, the trust-region 
method given in [4] cannot be used. Therefore, in the current paper, combined with the deflation technique, we will design a more 
efficient iteration and substantially improve the efficiency for finding multiple solutions of (1.1). To be specific, since the solution 
𝒖⃗ considered in (1.1) is assumed to be smooth, the spectral Legendre–Galerkin method is mainly used to discretize (1.1) for high 
precision. To address the residual with only first-order derivative information, we first employ the Levenberg–Marquardt method, 
a trust-region algorithm, to iteratively solve the resulting NLAS and deflated system. Here, our method is dubbed the spectral trust 
region LM-Deflation method. Compared with the existing methods, the main differences and advantages of the spectral trust region 
LM-Deflation method reside in two respects:

• When the number of unknown variables to be solved increases significantly, the spectral trust region LM-Deflation method 
efficiently reduces computational complexity by simplifying the Hessian matrix. Furthermore, the method is applicable for 
solving (1.1) with low regularity (i.e., 𝐺⃗ ∈ 𝐶1[𝑎, 𝑏]).

• In contrast to various existing methods, our method demonstrates the ability to efficiently and reliably converge to multiple 
solutions, which allows us to start even with the same initial guesses for multiple solutions based on the deflation technique.

The remainder of this paper is organized as follows. In Section 2, we describe the spectral trust region LM-Deflation method. In 
Section 3, numerical experiments are provided to demonstrate the efficiency of the method. In Section 4, we conclude the paper 
with some remarks.

2. An algorithm for computing multiple solutions

The main purpose of this section is to propose an efficient algorithm for computing multiple solutions of (1.1). The simple 
flow configuration for the algorithm is presented in Fig.  2.1, where the Spectral-Galerkin method is used to discretize (1.1), the 
trust region Levenberg–Marquardt method is designed to iterate the resulted NLAS and the deflated system, resulting in multiple 
solutions. For added clarity, the forthcoming section is divided into four parts: the first part — the Spectral-Galerkin method to 
(1.1), the second part — the trust region Levenberg–Marquardt method for iterating the resulted NLAS and the deflated system, the 
third part — the deflation technique for finding multiple solutions and the fourth part - a summary of our algorithm.
2 
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Fig. 2.1. The simple flow configuration of our algorithm.

2.1. The spectral-Galerkin method

We consider the following general system of partial differential equations 
𝒖 +𝒖 = 𝟎, 𝒙 ∈ 𝛺, (2.1)

where 𝒖 ∶= (𝑢1(𝒙), 𝑢2(𝒙),… , 𝑢𝑛(𝒙))⊤ is a vector function of 𝒙,  and   are linear and nonlinear operator, respectively. Here 
the linear operator  may be −𝛥 or other operators, and in this paper we mainly focus on the former. The nonlinear operator 
 ∶= (1(𝒖),2(𝒖),… ,𝑛(𝒖))⊤ is defined. When the basis functions {𝜙𝑘}𝑁𝑘=0 satisfied corresponding boundary conditions are 
chosen, the resulting {𝑢𝑖(𝒙)}𝑛𝑖=1 can be expanded as follows 

𝑢𝑖(𝒙) =
𝑁
∑

𝑗=0
𝑎𝑖𝑗𝜙𝑗 (𝒙), 1 ≤ 𝑖 ≤ 𝑛. (2.2)

Based on the Spectral-Galerkin method, substituting (2.2) into (2.1) yields the resulting nonlinear algebraic system, i.e., 
𝒂 +  (𝒂) = 𝟎, (2.3)

where

𝒂 = (𝑎10, 𝑎
1
1, … , 𝑎1𝑁 , 𝑎20, … , 𝑎2𝑁 , … , 𝑎𝑛0, … , 𝑎𝑛𝑁 )𝑇 ,

[𝑺]𝑖𝑗 = −∫𝛺
𝛥𝜙𝑗 (𝒙)𝜙𝑖(𝒙)𝑑𝒙,  =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑺

⋱ 0
⋱

0 ⋱
𝑺

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

 (𝒂) = (∫𝛺
1(𝒖)𝜙0(𝒙)𝑑𝒙,… ,∫𝛺

1(𝒖)𝜙𝑁 (𝒙)𝑑𝒙,∫𝛺
2(𝒖)𝜙0(𝒙)𝑑𝒙,… ,∫𝛺

𝑛(𝒖)𝜙𝑁 (𝒙)𝑑𝒙)⊤.

Here it is worth pointing out that 𝒂 in (2.3) is the unknown vector to be solved. To increase the clarity of the above process, as an 
illustrative example, we consider (2.1) with homogeneous Dirichlet boundary conditions, 𝑑 = 2 (i.e. 𝛺 = (𝑥, 𝑦)), 𝒖 = (𝑢1(𝑥, 𝑦), 𝑢2(𝑥, 𝑦))
and  = (1(𝒖),2(𝒖)), and the Legendre–Galerkin method is used to discretize it. Let P𝑁  be the set of the polynomials of degree 
at most 𝑁 , and P0

𝑁 = {𝜙 ∈ P𝑁 ∶ 𝜙(±1) = 0}. The Legendre–Galerkin approximation is to find (𝑢1𝑁 , 𝑢2𝑁 ) ∈ 𝑋0
𝑁 = (P0

𝑁 )2 such that 
{

(∇𝑢1𝑁 ,∇𝜙𝑁 ) = (𝐼𝑁1, 𝜙𝑁 ),
2 (2.4)
(∇𝑢𝑁 ,∇𝜙𝑁 ) = (𝐼𝑁2, 𝜙𝑁 ),

3 
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for ∀𝜙𝑁 ∈ P0
𝑁 , where 𝐼𝑁  is the Legendre–Gauss–Lobatto tensorial interpolation operator with 𝑁 + 1 points in each coordinate 

direction. Based on the property of the Legendre polynomial [22], we introduce the basis of P0
𝑁  as

𝜙𝑘(𝑥) = 𝐿𝑘(𝑥) − 𝐿𝑘+2(𝑥), 0 ≤ 𝑘 ≤ 𝑁,

and write

𝑢1𝑁 =
𝑁
∑

𝑘,𝑗=0
𝑎1𝑘𝑗𝜙𝑘(𝑥)𝜙𝑗 (𝑦), 𝑢2𝑁 =

𝑁
∑

𝑘,𝑗=0
𝑎2𝑘𝑗𝜙𝑘(𝑥)𝜙𝑗 (𝑦),

𝑎̂𝑘𝑗 = ∫𝐼
𝜙′
𝑗 (𝑥)𝜙

′
𝑘(𝑥)𝑑𝑥, 𝐴 = (𝑎̂𝑘𝑗 )𝑘,𝑗=0,1,…,𝑁 ,

𝑏𝑘𝑗 = ∫𝐼
𝜙𝑗 (𝑥)𝜙𝑘(𝑥)𝑑𝑥, 𝐵 = (𝑏𝑘𝑗 )𝑘,𝑗=0,1,…,𝑁 ,

1,𝑘𝑗 = (𝐼𝑁1, 𝜙𝑘(𝑥)𝜙𝑗 (𝑦)), 2,𝑘𝑗 = (𝐼𝑁2, 𝜙𝑘(𝑥)𝜙𝑗 (𝑦)).

𝑺,𝒂 and  in (2.3) become
𝑺 = 𝐴⊗ 𝐵 + 𝐵 ⊗𝐴⊤,

𝒂 = (𝑎100, 𝑎
1
10,… , 𝑎1𝑁0, 𝑎

1
01,… , 𝑎1𝑁1,… , 𝑎1𝑁𝑁 , 𝑎200,… , 𝑎2𝑁𝑁 )⊤,

 = (1,00,1,10,… ,1,𝑁0,… ,1,𝑁𝑁 ,2,00,2,10,… ,2,𝑁0,… ,2,𝑁𝑁 )⊤.

Here ⊗ denotes the tensor product operator, i.e. 𝐴⊗𝐵 = (𝐴𝑏𝑖𝑗 )𝑖,𝑗=0,1,…,𝑁 . It is worth pointing out that when 𝑁 is increased, (2.3) (or 
(2.4)) will become a large-scale nonlinear system, indicating that solving it will be more challenging. Moreover, when the nonlinear 
operator in (2.1) is only first-order differentiable with respect to 𝒖,  in (2.3) is also only first-order differentiable with respect 
to 𝒂. In other words, algorithms with second-order derivative information fail to solve (2.3). Motivated by [4], the trust region 
Levenberg–Marquardt method is designed to overcome these difficulties for the first time. In addition, in the computational process, 
we only need to evaluate 1,𝑘𝑗 and 2,𝑘𝑗 for given 𝒖 that can be implemented efficiently by the pseudo-spectral technique described 
in [22, Ch. 4] in terms of coefficients.

2.2. The trust region Levenberg–Marquardt method

Firstly, we rewrite (2.3) in a more elegant form, i.e., 

𝑭 =
(

𝐹1, 𝐹2, ⋯ , 𝐹𝑛
)𝑇 (2.5)

with the unknown vector 𝒂 = (𝑎1, … , 𝑎𝑛)𝑇 , where 𝐹𝑖 (𝑖 = 1,… , 𝑛) are functions of the unknown vector 𝒂. Here our aim is to find 𝒂
to satisfy 𝑭 (𝒂) ≡ 𝟎. Motivated by [4], we reformulate the zero-finding problem (2.5) as a nonlinear optimization problem using the 
nonlinear least-squares method: 

min
𝒂∈R𝑛

𝑄(𝒂), 𝑄(𝒂) ∶= 1
2
‖

‖

‖

𝑭 (𝒂)‖‖
‖

2

2
= 1

2

𝑛
∑

𝑖=1
𝐹 2
𝑖 (𝒂). (2.6)

Before presenting an efficient method to solve (2.6), we should introduce the Jacobian matrix, the gradient and Hessian matrix as 
follows:

𝑱 (𝒂) = 𝑭 ′(𝒂) = (∇𝐹1(𝒂),∇𝐹2(𝒂),… ,∇𝐹𝑛(𝒂))𝑇 ,

𝒈(𝒂) = ∇𝑄(𝒂) = 𝑱 𝑇 (𝒂)𝑭 (𝒂) and 𝑮(𝒂) = ∇2𝑄(𝒂) = 𝑱 𝑇 (𝒂)𝑱 (𝒂) + 𝑺(𝒂),

where 𝑺(𝒂) = ∑𝑛
𝑖=1 𝐹𝑖(𝒂)∇2𝐹𝑖(𝒂). so far, in term of updating the unknown vector 𝒂 in (2.6), there may exist three formats as follows: 

(𝐈) 𝒂𝑘+1 = 𝒂𝑘 −𝑮(𝒂𝑘)−1𝒈(𝒂𝑘), (Newtonian method)
(𝐈𝐈) 𝒂𝑘+1 = 𝒂𝑘 − (𝐽 (𝒂𝑘)𝑇 𝐽 (𝒂𝑘))−1𝒈(𝒂𝑘), (Gauss–Newtonian method)
(𝐈𝐈𝐈) 𝒂𝑘+1 = 𝒂𝑘 − (𝐽 (𝒂𝑘)𝑇 𝐽 (𝒂𝑘) + 𝜇𝑘𝐼)−1𝒈(𝒂𝑘), (Levenberg–Marquardt method)

(2.7)

where 𝜇𝑘 ≥ 0 is a parameter being updated from iteration to iteration. Obviously, the main disadvantage of the Newtonian method is 
that the second-order term 𝑺(𝒂) in the Hessian matrix 𝑮(𝒂) is difficult or expensive to compute. Further, as said in the introduction 
above, the Hessian matrix 𝑮(𝒂) does not exist in some situations, which means that the Newtonian method cannot be used to 
solve (2.6). When ignoring 𝑺(𝒂), we use the format 𝐈𝐈 to solve (2.6), where it is also required that Jacobian matrix 𝑱 (𝒂) has full 
column rank. In other words, if 𝑱 (𝒂) is rank-deficient, then the format 𝐈𝐈 cannot work well. In addition, based on our experience 
from [4], we have realized that computing a full Hessian matrix can reduce computational efficiency. Therefore, here we use the 
Levenberg–Marquardt method to solve (2.6) in the process of seeking multiple solutions. Let 

𝒔 ∶= 𝒂 − 𝒂 = −(𝑱 (𝒂 )𝑇 𝑱 (𝒂 ) + 𝜇 𝐼)−1𝒈(𝒂 ), (2.8)
𝑘 𝑘+1 𝑘 𝑘 𝑘 𝑘 𝑘

4 
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then it is easy to verify that the Levenberg–Marquardt step 𝒔𝑘 in (2.8) is the solution of the following optimization problem 
min
𝒔∈𝑅𝑛

‖𝑭 (𝒂𝑘) + 𝑱 (𝒂𝑘)𝒔‖22 + 𝜇𝑘‖𝒔‖22. (2.9)

Meanwhile, the Levenberg–Marquardt method is also one of the trust-region methods. To be specific, the following trust-region 
model is considered: 

min
𝒔∈Bℎ𝑘

𝑞(𝑘)(𝒔) ∶= 𝑄(𝒂𝑘) + 𝒈(𝒂𝑘)𝑇 𝒔 +
1
2
𝒔𝑇 𝑱 (𝒂𝑘)𝑇 𝑱 (𝒂𝑘)𝒔, (2.10)

where 𝛥𝑘 represents the trust-region radius and the trust region Bℎ𝑘 ∶= {𝒔 ∶= 𝒙−𝒙𝑘 ∈ R𝑛 ∶ ‖𝒔‖2 ≤ 𝛥𝑘 = ‖𝒔𝑘‖2}[23–26]. Then we can 
derive that 𝒔𝑘 in (2.8) is the global optimal solution of (2.10) [27]. Moreover, for the trust-region method, the global convergence 
with a local superlinear rate of convergence is as follows: 

Theorem 2.1 (See [27]). Assume that
(i) the function 𝑄(𝒙) is bounded below on the level set 

𝑆 ∶= {𝒙 ∈ R𝑛 ∶ 𝑄(𝒙) ≤ 𝑄(𝒙(0))}, ∀𝒙(0) ∈ R𝑛, (2.11)

and is Lipschitz continuously differentiable in 𝑆;
(ii) the Hessian matrices 𝐺(𝒙(𝑘)) are uniformly bounded in 2-norm, i.e., ‖𝐺(𝒙(𝑘))‖ ≤ 𝛽 for any 𝑘 and some 𝛽 > 0.

If 𝒈(𝒙(𝑘)) ≠ 𝟎, then 
lim
𝑘→∞

inf ‖𝒈(𝒙(𝑘))‖ = 0. (2.12)

Moreover, if 𝒈(𝒙∗) = 𝟎, and 𝑮(𝒙∗) is positive definite, then the convergence rate of the trust-region method is quadratic. 
In addition, it is worth pointing out that the main difference between the Levenberg–Marquardt method (i.e. (2.10)) and other 

trust region methods is that other trust region methods update the trust region radius 𝛥𝑘 directly, while the Levenberg–Marquardt 
method updates the parameter 𝜇𝑘, which in turn modifies the value 𝛥𝑘 implicitly. Moreover, we can see that (𝐽 (𝒂𝑘)𝑇 𝐽 (𝒂𝑘) +𝜇𝑘𝐼) in 
(2.7) is also positive definite, indicating that its inverse can be well defined. When 𝜇𝑘 in (2.7) is changed, the Levenberg–Marquardt 
method allows choosing any direction between the Gauss–Newtonian direction and the steepest descent direction, i.e., when 𝜇𝑘 = 0, 
it reduces to the Gauss–Newtonian direction. While 𝜇𝑘 is large enough, the produced direction is close to the steepest descent 
direction. Furtherly, in [27], Yuan et al. have described the relation between 𝒔 and 𝜇, i.e., let 𝒔 = 𝒔(𝜇) is a solution of 

(𝐽 (𝒂)𝑇 𝐽 (𝒂) + 𝜇𝐼)𝒔 = −𝒈(𝒂), (2.13)

Then we can conclude the following theorem. 

Theorem 2.2.  When 𝜇 increases from zero, ‖𝒔(𝜇)‖2 in (2.10) will decrease strictly monotonically.
To obtain a proper trust-region radius 𝛥𝑘 for determining 𝒔𝑘 and 𝜇𝑘, we define 

𝑟𝑘 =
𝑄(𝒂𝑘) −𝑄(𝒂𝑘+1)
𝑞(𝑘)(𝟎) − 𝑞(𝑘)(𝒔𝑘)

(2.14)

for 𝑞(𝑘)(𝒔𝑘) and the objective function value 𝑄(𝒂𝑘+1). (2.14) is viewed as an indicator for the expansion and contraction of the trust 
region 𝛥𝑘. If 𝑟𝑘 is close to 1, it means there is good agreement, we can expand the trust-region radius for the next iteration. Based 
on the relation between 𝒔𝑘 and 𝜇𝑘 in Theorem  2.2, we should reduce 𝜇𝑘+1 for this case, and choose 𝜇𝑘+1 = 0.1𝜇𝑘. If 𝑟𝑘 is close 
to zero or negative, the trust-region radius should be shrunk, indicating the corresponding value of 𝜇𝑘+1 should be increased, and 
𝜇𝑘+1 = 10𝜇𝑘 is chosen. Otherwise, we do not alter the trust-region radius.

Next, to the best of our knowledge, we will present the results on the convergence of the Levenberg–Marquardt method in the 
existing literature. For the convenience of subsequent presentation, the definition of the local error bound should be introduced as 
follows:

Definition of the local error bound. Let 𝑋∗ be the solution set of (2.5) and 𝒂∗ ∈ 𝑋∗, if there exists a positive constant 𝑐 > 0 such 
that 

‖𝑭 (𝒂)‖2 > 𝑐 dist(𝒂, 𝑋∗), ∀𝒂 ∈ 𝑁(𝒂∗, 𝑏) = {𝒂| ‖𝒂 − 𝒂∗‖2 ≤ 𝑏} ∩𝑋∗ ≠ ∅, (2.15)

where

dist(𝒂, 𝑋∗) = inf
𝒚∈𝑋∗

‖𝒂 − 𝒚‖2.

Then, we call that 𝑭 (𝒂) is a local error bound on some neighborhood of 𝒂∗ ∈ 𝑋∗. As said in [28], if the Jacobian matrix is nonsingular 
at the solution 𝒂∗ of (2.5) and if the initial guess is chosen sufficiently close to 𝒂∗, then the Levenberg–Marquardt method has a 
quadratic convergence. To improve the requirement of the nonsingularity, Yamashita and Fukushima [29] show that under the local 
error bound condition, if 𝜇𝑘 = ‖𝑭 (𝒂𝑘)‖22 and if the initial guess is chosen sufficiently close to the solution set 𝑋∗, the Levenberg–
Marquardt method converges quadratically to the solution set 𝑋∗. In [30], Fan et al. considered 𝜇 = ‖𝑭 (𝒂 )‖𝛿 with 𝛿 ∈ [1, 2] and 
𝑘 𝑘 2
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proved that the Levenberg–Marquardt method still achieves the quadratic convergence under the same conditions. In [28], the cubic 
convergence of the modified Levenberg–Marquardt method was also proved under the local error bound condition. Finally, some 
progressive and interesting studies can be seen in [31].

2.3. The deflation technique for finding multiple solutions

In fact, the deflation technique is used to find multiple solutions of (2.5). Its main idea is to successively modify (2.5) under 
consideration to eliminate known solutions, and discover additional distinct solutions. We now state the deflation process for 
computing multiple solutions to the nonlinear algebraic system (2.5).

tep 1. Give an initial guess 𝒂0 ∈ 𝑅𝑛;
tep 2. Based on the Levenberg–Marquardt method, a solution of (2.5) is computed with the initial

guess 𝒂0, and the solution is denoted by 𝒓1;
tep 3. A deflation operator is defined as 

𝛹 (𝒂; 𝒓1) = ( 1
‖𝒂 − 𝒓1‖

𝑝
𝑞
+ 𝛼)I, (2.16)

where I is the identity operator, 𝛼 ≥ 0 is a shift scalar, 𝑝 ∈ [1,∞) is the deflation exponent.
The norm ‖ ⋅ ‖𝑞 should be chosen for the solution space, and here we choose 𝑞 = 2. A deflated system 𝑭̂ (𝒂) can be formed 
by applying (2.16) to (2.5) as 

𝑭̂ (𝒂) = 𝛹 (𝒂; 𝒓1)𝑭 (𝒂); (2.17)

tep 4. With the same initial guess 𝒂0, the deflated system 𝑭̂ (𝒂) is solved using the Levenberg-
Marquardt method, and the resulting solution is denoted by 𝒓2;

tep 5. A multiple deflation operator needs to be defined as follows: 

𝛹 (𝒂; 𝒓1, 𝒓2) =
2
∏

𝑖=1
𝛹 (𝒂; 𝒓𝑖), (2.18)

and a new deflated system ̂̂𝑭 (𝒂) can be obtained: 
̂̂𝑭 (𝒂) = 𝛹 (𝒂; 𝒓1, 𝒓2)𝑭 (𝒂); (2.19)

tep 6. Similar to Step 4, and the resulting solution is denoted by 𝒓3;
tep 7. Continue the cycle from Step 5 to Step 6, multiple solutions can be obtained, and these

solutions are denoted by 𝑋∗ = {𝒓1, 𝒓2,…}.

Remark 2.1.  To have a better understanding and application of the deflation, we make some necessary remarks as follows:

In Step 3, the main purpose of introducing the deflation operator (2.16) is to find another distinct solution. To be specific, based 
on the results in [4,32,33], the deflated system 𝑭̂ (𝒂) satisfies two properties: (i) The preservation of solutions of 𝑭̂ (𝒂) should be 
hold, i.e. for 𝒂 ≠ 𝒓1, 𝑭̂ (𝒂) = 𝟎 iff 𝑭 (𝒂) = 𝟎; (ii) The Levenberg–Marquardt method applied to 𝑭̂ (𝒂) will not find 𝒓1 again due to the 
deflation operator, i.e.,

lim
𝒂→𝒓1

inf ‖𝑭̂ (𝒂)‖𝑞 > 0,

indicating that with the deflation operator, another distinct solution can be obtained, even with the same initial guess. In addition, 
for simplicity, in the current paper 𝑝 = 2 and 𝛼 = 1 in (2.16) are chosen.

In Step 5, it is worth mentioning that when we consider more than two solutions, the multiple deflation operator is constructed, 
which may increase the computational complexity in the nonlinear iteration. The single deflation operator with the initial guess 
presented in Step 4 may be considered to replace the multiple deflation operator, which is helpful in reducing the computational 
complexity.

2.4. Summary of the spectral Levenberg–Marquardt-Deflation algorithm

In summary, based on the methods above, a new and novel algorithm for computing multiple solutions of (1.1) can be designed, 
which is presented in the following Algorithm 1.
6 
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Algorithm 1 - An algorithm of computing multiple solutions of (1.1)
 Input: 0 < 𝜖 ≪ 1, 0 < 𝛿1 < 𝛿2 < 1, 𝜇0 = 0.01, and initial solution set 𝑆 ⇐ the empty set 𝛷.
 Output: 𝑆
 1:  Given nonlinear discrete system 𝑭 (𝒂) by the Legendre–Galerkin method in the section 2.1.
 2:  while multiple solutions not reached do
 3:  while first-order optimality threshold or failure criterion not met do
 4:  Compute 𝑱 (𝒂𝑘) and 𝒈(𝒂𝑘); ⊳ Levenberg–Marquardt iteration in section 2.2.
 5:  If ‖𝒈(𝒂𝑘)‖ < 𝜖 and |𝑄(𝒂𝑘)|1∕2 < 𝜖, stop;
 6:  Approximately solve 𝒔𝑘 by (2.8);
 7:  Compute 𝑟𝑘 by (2.14);
 8:  If 𝑟𝑘 ≥ 𝛿1, then 𝒂𝑘+1 = 𝒂𝑘 + 𝒔𝑘; Otherwise, set 𝒂𝑘+1 = 𝒂𝑘;
 9:  If 𝑟𝑘 < 𝛿1, then 𝜇𝑘+1 ∶= 10𝜇𝑘;

 If 𝛿1 ≤ 𝑟𝑘 ≤ 𝛿2, then 𝜇𝑘+1 ∶= 𝜇𝑘;
 Otherwise, set 𝜇𝑘+1 ∶= 0.1𝜇𝑘;

10:  Update 𝑞(𝑘), set 𝑘 ∶= 𝑘 + 1, go to step 4;
11: end
12:  if Convergence threshold met then
13:  Add converged solution 𝒓 to 𝑆;
14: 𝑭̂ (𝒂) ← 𝛹 (𝒂; 𝒓)𝑭 (𝒂) ⊳ the deflation technique presented in section 2.3.
15:  Go back to step 3;
16: end
17:  end
18: return 𝑆

Some additional remarks about the implementation of the Algorithm 1 are listed, and the corresponding numerical tests will be 
conducted in the forthcoming section.

• For the Levenberg–Marquardt iteration (see lines 3-11), if both 𝑭  and its Jacobi 𝑱  are Lipschitz continuous, i.e., there exist 
positive constants 𝐿1 and 𝐿2 such that 

‖𝑭 (𝒚) − 𝑭 (𝒙)‖2 ≤ 𝐿2‖𝒚 − 𝒙‖2, ∀𝒙, 𝒚, (2.20)

and 
‖𝑱 (𝒚) − 𝑱 (𝒙)‖2 ≤ 𝐿1‖𝒚 − 𝒙‖2, ∀𝒙, 𝒚. (2.21)

Let 𝒔𝑘 be computed by (2.8), then the inequality 

𝑄𝑘(0) −𝑄𝑘(𝒔𝑘) ≥ ‖𝒈𝑘‖2 min{‖𝒔𝑘‖2,
‖𝒈𝑘‖2

‖𝑱 𝑇
𝑘 𝑱 𝑘‖2

} (2.22)

holds for all 𝑘 ≥ 1. Moreover, the sequence generated by the Algorithm 1 satisfies 
lim
𝑘→∞

‖𝒈𝑘‖2 = 0. (2.23)

For the local convergence, {𝒂𝑘} will converge to 𝒂∗ when 𝑭  satisfies the local error bound given in (2.15). In addition, when the 
conditions of convergence above cannot be satisfied, the Levenberg–Marquardt method combined with the deflation technique 
may diverge. To improve it, we consider the choice of a random deviation from the obtained solution as the initial guess based 
on the previous research conclusion [4].

• As highlighted previously, the Levenberg–Marquardt method is first introduced. Compared with the Newtonian method, 
the Levenberg–Marquardt method enables us to overcome the sensitivity of initial guesses and substantially improve the 
computational efficiency. This will be verified by subsequent numerical experiments.

• It is worth pointing out that when increasing 𝑁 , we can use the matrix–vector multiplication to save storage space in a 
computer.

3. Numerical experiments

In this section, with several numerical experiments, we focus on the efficiency of Algorithm 1 for finding multiple solutions. 
1-D and 2-D numerical experiments are shown in Sections 3.1–3.2, respectively. We choose 𝛿1 = 0.25, 𝛿2 = 0.75 and 𝜖 = 10−13 in 
Algorithm 1, and all programs are carried out on a server with Intel(R) Core(TM) i7-7500U (2.90 GHz) and 120 GB RAM.

3.1. ODE examples

We consider the following problem: 
⎧

⎪

⎨

⎪

𝑑1
𝑑2𝑢
𝑑𝑥2

= 𝑔1(𝑢, 𝑣)

𝑑2
𝑑2𝑣

2 = 𝑔2(𝑢, 𝑣)
on 𝛺 = (0, 1) (3.1)
⎩

𝑑𝑥
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Fig. 3.1. Multiple solutions of the Schnakenberg model with 𝑑2 = 50.

Fig. 3.2. Multiple solutions of the Schnakenberg model with 𝑑2 = 70.

with the no-flux boundary conditions: 𝑑𝑢𝑑𝑥 = 0 and 𝑑𝑣𝑑𝑥 = 0 in 𝜕𝛺, where 𝑑1 and 𝑑2 are constants to be specified later. We focus on 
the Schnakenberg model (i.e. 𝑔1(𝑢, 𝑣) = 𝑐(𝑢 − 𝑎 − 𝑢2𝑣), 𝑔2(𝑢, 𝑣) = 𝑐(𝑢2𝑣 − 𝑏)) and the Gray–Scott model (i.e. 𝑔1(𝑢, 𝑣) = (𝜇 + 𝜌)𝑢 − 𝑣𝑢2, 
𝑔2(𝑢, 𝑣) = 𝑣𝑢2 − 𝜌(1 − 𝑣)), where 𝑎, 𝑏, 𝑐, 𝜇 and 𝜌 are constants.

3.1.1. The Schnakenberg model
As said in [34], the Schnakenberg model is a Turing model, where 𝑢 is an activator and 𝑣 is a substrate. With numerical tests, 

we consider two cases 𝑑2 = 50 and 𝑑2 = 70 with fixed parameters 𝑑1 = 1, 𝑎 = 1∕3, 𝑏 = 2∕3 and 𝑐 = 200, respectively. In Figs.  3.1–3.2, 
multiple solutions of the Schnakenberg model on 𝑢(𝑥) and 𝑣(𝑥) are presented, where we list the number of solutions labeled by I, II, 
⋯, V. These multiple solutions are in agreement with that presented in [34]. The efficiency of our spectral trust region LM-Deflation 
method for finding these multiple solutions is considered emphatically, and the corresponding numerical results are also included 
in Tables  1–2. Some observations and highlights are as follows.

• When 𝑁 = 8, 16 and 24, the accuracies of our spectral trust region LM-Deflation method are presented in Table  1, where we 
compare the errors in maximum norm with the numerical solution (𝑢̂, 𝑣̂) obtained with a relatively large 𝑁 , indicating that 
our method is quite accurate.

• Based on the following initial guesses, a comparison of ‖𝑭 (𝒙)‖2 between our method and other methods is given in Table  2. 

IG1 ∶

{

𝑢̃(0) = −ones(𝑁 + 1, 1)
𝑣̃(0) = −ones(𝑁 + 1, 1)

IG2 ∶

{

𝑢̃(0) = − sin(ones(𝑁 + 1, 1))
𝑣̃(0) = −ones(𝑁 + 1, 1)

IG3 ∶= sin(IG1), (3.2)

where 𝑁 = 24. The Newtonian iterations fail to converge for these initial inputs, while for the LSTR method and our method, 
the values of ‖𝑭 (𝒙)‖2 descend very fast. However, it is noteworthy that the computational times (denoted by T) of our method 
are much less than those of the LSTR method, indicating that the trust region Levenberg–Marquardt iteration in Section 2.2 
plays an important role in improving the efficiency of our method (see Table  3).

3.1.2. The Gray–Scott model
In the chemical reaction, the Gray–Scott model is used to describe the autocatalytic reaction between the activator and the 

substrate. With the bootstrapping method, Hao et al. [34] studied multiple solutions of stationary spatial patterns on the Gray–Scott 
8 
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Table 1
Performance of our spectral trust region LM-Deflation method with 𝑑2 = 50.
 I II III

 𝑁 ‖𝑭‖2 CPU 𝑁 ‖𝑭‖2 CPU 𝑁 ‖𝑭‖2 CPU 
 
||𝑢𝑁 − 𝑢̂||∞

8 1.06e−14 0.34 8 5.78e−2 0.51 8 2.06e−2 0.45 
 16 2.94e−15 1.65 16 3.29e−7 2.54 16 9.20e−6 3.01 
 24 2.37e−15 1.89 24 8.14e−13 3.49 24 5.21e−12 3.12 
 
||𝑣𝑁 − 𝑣̂||∞

8 4.69e−13 – 8 3.96e−3 – 8 8.34e−2 –  
 16 7.93e−14 – 16 5.20e−7 – 16 4.62e−5 –  
 24 1.02e−15 – 24 6.74e−13 – 24 3.02e−12 –  

Table 2
A comparison of ‖𝑭 (𝒙)‖2 between our method and other methods.
 Newtonian iteration in [33] LSTR method in [4] Algorithm 1
 𝑛𝑖𝑡 IG1 IG2 IG3 𝑛𝑖𝑡 IG1 IG2 IG3 𝑛𝑖𝑡 IG1 IG2 IG3  
 5 2.78e14 3.81e13 4.98e16 5 5.03e9 3.20e7 4.08e10 5 2.08e8 5.21e10 9.38e6  
 10 4.51e17 9.06e18 5.92e19 10 4.78e5 3.01e3 5.78e7 10 2.51e5 9.38e5 4.78e−1  
 15 3.01e23 9.43e23 8.49e26 15 3.92e1 8.29e−1 6.93e2 15 7.53e−1 2.04e−2 4.80e−7  
 20 4.83e32 9.50e31 8.71e30 20 3.19e−5 9.85e−7 4.32e−5 20 5.97e−6 3.01e−7 5.83e−10 
 – – – 25 5.29e−10 6.05e−10 3.50e−10 25 6.35e−11 3.01e−13 5.49e−13 
 T – – – 4.82 3.72 5.73 3.02 2.93 3.01  

Table 3
Performance of our spectral trust region LM-Deflation method with 𝑑2 = 70.
 I II III

 𝑁 ‖𝑭‖2 CPU 𝑁 ‖𝑭‖2 CPU 𝑁 ‖𝑭‖2 CPU 
 
||𝑢𝑁 − 𝑢̂||∞

8 3.03e−13 0.40 8 1.97e−3 0.72 8 3.92e−2 0.63 
 16 7.96e−15 2.01 16 5.82e−8 1.83 16 8.37e−6 2.95 
 24 6.35e−15 2.45 24 9.16e−13 3.02 24 1.46e−13 3.87 
 
||𝑣𝑁 − 𝑣̂||∞

8 5.82e−13 – 8 5.89e−3 – 8 2.71e−2 –  
 16 9.26e−15 – 16 6.92e−8 – 16 4.57e−6 –  
 24 4.15e−15 – 24 8.31e−15 – 24 8.47e−14 –  
 IV V

 𝑁 ‖𝑭‖2 CPU 𝑁 ‖𝑭‖2 CPU  
 
||𝑢𝑁 − 𝑢̂||∞

8 2.57e−3 0.25 8 1.49e−3 0.49  
 16 4.58e−8 1.82 16 7.47e−8 1.75  
 24 6.79e−13 2.79 24 6.73e−14 3.03  
 
||𝑣𝑁 − 𝑣̂||∞

8 2.07e−3 – 8 9.45e−3 –  
 16 2.69e−9 – 16 8.41e−8 –  
 24 9.36e−12 – 24 3.24e−13 –  

Table 4
Accuracy of our spectral trust region LM-Deflation method on ||𝑢𝑁 − 𝑢̂||∞.
 𝑁 I II III IV V VI VII VIII IX X  
 8 1.03e−3 5.21e−2 5.93e−2 6.30e−2 6.29e−4 3.92e−3 6.55e−2 1.71e−3 3.18e−2 7.06e−2  
 16 7.57e−6 4.45e−7 4.89e−7 6.46e−6 9.50e−8 3.44e−8 1.86e−7 3.44e−6 7.91e−8 3.17e−7  
 24 5.73e−10 4.38e−11 6.93e−12 5.93e−11 9.52e−11 1.03e−12 8.41e−10 6.55e−11 9.21e−13 2.09e−12 
 𝑁 XI XII XIII XIV XV XVI XVII XVIII XIX XX  
 8 2.76e−2 4.98e−2 9.68e−3 8.42e−2 6.99e−3 1.63e−3 9.59e−2 6.55e−3 1.19e−2 2.43e−3  
 16 5.43e−5 6.83e−6 2.54e−7 8.14e−7 9.29e−8 2.55e−7 5.47e−7 8.14e−6 8.28e−7 7.34e−6  
 24 5.83e−13 1.65e−12 2.67e−10 6.66e−13 4.98e−12 1.38e−11 9.59e−12 7.51e−13 2.53e−12 2.08e−12 

model on a 1D domain [0, 1]. Our spectral trust region LM-Deflation method is also used to find these multiple solutions, and we 
choose 𝑑1 = 2.5×10−4, 𝑑2 = 5×10−4, 𝜌 = 0.04 and 𝜇 = 0.065, which is the same as in [34]. Moreover, the property of the solutions on 
the Gray–Scott model is introduced, i.e., the solutions of the Gray–Scott model are symmetric to the center of the domain 𝑥 = 0.5. 
To be specific, if 𝑢(𝑥) is a solution, then 𝑢((𝑥 + 0.5) mod 1) is also a solution.

In Fig.  3.3, we show multiple solutions of the Gray–Scott model in a 1D domain [0, 1], and the number of solutions are labeled 
by I, II,…, where these multiple solutions are agreement with that obtained in [34], and the solutions are symmetric with respect 
to the center of the domain 𝑥 = 0.5 (such as I and III, II and IV). Numerical tests on I,… ,XX are considered to show the efficiency 
of our spectral trust region LM-Deflation method. In Tables  4–5, with increasing 𝑁 , the accuracies on ‖𝑢 − 𝑢̂‖  and ‖𝑣 − 𝑣̂‖  are 
𝑁 ∞ 𝑁 ∞
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Fig. 3.3. Multiple solutions of the Gray–Scott model (Red: 𝑢24(𝑥); Blue: 𝑣24(𝑥)).

Fig. 3.4. New solutions of the Gray–Scott model (Red: 𝑢24(𝑥); Blue: 𝑣24(𝑥)).
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Table 5
Accuracy of our spectral trust region LM-Deflation method on ||𝑣𝑁 − 𝑣̂||∞.
 𝑁 I II III IV V VI VII VIII IX X  
 8 3.49e−3 3.51e−2 7.58e−2 1.29e−3 1.96e−2 8.30e−3 7.57e−2 5.39e−3 5.68e−3 2.51e−3  
 16 2.51e−8 3.81e−7 5.30e−8 4.69e−6 1.19e−8 2.51e−7 6.16e−8 4.73e−7 9.17e−7 5.33e−6  
 24 5.85e−13 3.37e−11 1.62e−12 6.01e−13 8.25e−12 3.11e−11 6.89e−13 4.42e−11 8.17e−12 7.74e−13 
 𝑁 XI XII XIII XIV XV XVI XVII XVIII XIX XX  
 8 8.68e−3 4.31e−2 1.36e−3 8.53e−2 7.59e−2 8.44e−1 8.69e−3 3.50e−2 2.39e−2 1.23e−3  
 16 5.77e−5 5.13e−7 3.50e−6 1.36e−8 3.99e−6 1.81e−7 5.79e−7 1.44e−6 1.83e−8 6.22e−6  
 24 2.64e−13 4.90e−12 9.02e−12 4.96e−12 1.31e−13 2.34e−11 3.53e−11 8.21e−12 4.30e−12 9.64e−11 

Table 6
A comparison of ‖𝑭 (𝒙)‖2 between our method and other methods for the Gray–Scott model.
 Newtonian iteration in [33] LSTR method in [4] Algorithm 1
 𝑛𝑖𝑡 IG1 IG2 IG3 𝑛𝑖𝑡 IG1 IG2 IG3 𝑛𝑖𝑡 IG1 IG2 IG3  
 5 1.68e9 5.47e10 3.06e10 5 5.03e6 3.20e7 4.08e8 5 4.09e7 4.81e7 4.96e8  
 10 1.88e14 4.86e16 5.10e14 10 5.56e3 3.81e3 2.75e4 10 2.51e4 3.85e4 7.78e4  
 15 3.21e17 8.17e16 5.10e15 15 3.85e0 8.09e−1 7.93e0 15 4.83e1 2.67e−1 4.29e−1  
 20 6.86e23 4.50e25 3.68e20 20 8.41e−5 4.56e−7 4.52e−5 20 3.39e−6 8.83e−7 4.21e−6  
 – – – 25 5.93e−10 1.98e−10 3.67e−10 25 9.12e−11 9.36e−13 7.73e−13 
 T – – – 5.09 5.31 5.12 4.21 3.39 4.19  

Table 7
Performance of our spectral trust region LM-Deflation method to new solutions of the Gray–Scott model.
 𝑁 XXI XXII

 8 16 24 8 16 24  
 𝐿∞ error 2.8401e−4 3.9201e−8 4.0923e−12 3.6520e−5 1.9302e−9 1.2084e−13 
 ‖𝑭 (𝒙)‖2 4.0398e−12 6.3028e−13 6.9281e−12 1.9026e−12 7.9036e−12 2.0538e−13 

given, indicating that our spectral trust region LM-Deflation method is reliable and effective. Since we are not trying to provide the 
Hessian matrix exactly, the efficiency of our spectral trust region LM-Deflation method in the nonlinear iteration is well behaved 
in Table  6. Furthermore, two new solutions which were not reported in the literature are also found (see Fig.  3.4), and they are 
labeled by XXI and XXII. The corresponding numerical information is also given in Table  7.

3.2. PDE examples

We consider the model problem: 
⎧

⎪

⎨

⎪

⎩

− ▵ 𝑢 = 𝐺1(𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)),
− ▵ 𝑣 = 𝐺2(𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)),
𝑢 = 0, 𝑣 = 0 on 𝜕𝛺,

(3.3)

where (𝑥, 𝑦) ∈ 𝛺, and 𝐺1(𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)), 𝐺2(𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)) and 𝛺 are to be specified later. Here we focus on three cases as follows:
Case 1: The problem (3.3) with 𝐺1(𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)) = 𝜆𝑢 − 𝛿𝑣 + |𝑢|𝑝−1𝑢 and 𝐺2(𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)) = 𝛿𝑢 + 𝛾𝑣 − |𝑣|𝑞−1𝑣 is known as the 
noncooperative system of definite type [5], which together with the domain 𝛺 = (−1, 1) × (−1, 1). We choose 𝑝 = 𝑞 = 3, 𝜆 = −0.5, 𝛾 =
−0.5, 𝛿 = 5. In Figs.  3.5–3.7, we present multiple solutions of the noncooperative system of definite type and their contours, where 
we list the number of solutions labeled by I, II,… ,VI. The solutions with 1-peak or 2-peak are in agreement with those presented 
in [5]. While the solutions with multiple peaks are found and shown for the first time. The accuracies of these multiple solutions 
are presented in Table  8. Based on different initial guesses in (3.4) (𝑁 = 24), We further consider a comparison of ‖𝑭 (𝒙)‖2 between 
our method and other methods (see Table  9), indicating that our method is very effective again.

IG1 ∶

{

𝑢̃(0) = −ones(𝑁 + 1, 𝑁 + 1)
𝑣̃(0) = −ones(𝑁 + 1, 𝑁 + 1),

IG2 ∶

{

𝑢̃(0) = − sin(ones(𝑁 + 1, 𝑁 + 1))
𝑣̃(0) = − sin(ones(𝑁 + 1, 𝑁 + 1)).

(3.4)

When 𝑝 = 2 and 𝑞 = 2, from (3.3) and Fig.  3.8, we can conclude that 𝐺1, 𝐺2 ∈ 𝐶1[−1, 1] is only satisfied. As said in the 
introduction, the method using second derivative information cannot be used to solve (3.3). While the trust region Levenberg–
Marquardt method introduced in Section 2.2 has great advantages, and numerical results are presented in Figs.  3.9–3.11 and Table 
10, indicating that our algorithm is very effective again.
Case 2: The problem (3.3) with 𝐺1(𝑢(𝑥), 𝑣(𝑥)) = 𝜆𝑢− 𝛿𝑣+ |𝑢|𝑝−1𝑢 and 𝐺2(𝑢(𝑥), 𝑣(𝑥)) = 𝛿𝑢+ 𝛾𝑣+ |𝑣|𝑞−1𝑣 is known as the noncooperative 
system of indefinite type [5], which together with the domain 𝛺 = (−3, 3)×(−3, 3). The parameters 𝑝 = 𝑞 = 3, 𝜆 = −0.5, 𝛾 = −1, 𝛿 = 0.5
11 
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Fig. 3.5. Profiles of 1-peak solutions for 𝑝 = 3 and 𝑞 = 3.

Fig. 3.6. Profiles of 2-peak sign-changing solutions for 𝑝 = 3 and 𝑞 = 3.

Fig. 3.7. Profiles of multi-peak solutions for 𝑝 = 3 and 𝑞 = 3.

are chosen. In Figs.  3.12–3.14, several multiple solutions and their contours are presented, where some asymmetric or multi-peak 
solutions are also found and shown. As for the efficiency of our algorithm, the situation is similar to the case above, and we do not 
repeat and show it.

Similar to the case 1, 𝐺1, 𝐺2 ∈ 𝐶1[−1, 1] is only satisfied when 𝑝 = 2 and 𝑞 = 2. Here our aim is to test the efficiency of our 
algorithm, not to find multiple solutions as many as possible. Numerical results are presented in Figs.  3.15–3.16, and the performance 
of the efficiency in finding multiple solutions is similar to the case 1 above. Here we do not repeat and show it.
12 
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Table 8
Accuracy of the Algorithm 1 for 𝑝 = 3 and 𝑞 = 3.
 𝑁 I II III IV V VI  
 
||𝑢24 − 𝑢̂||∞

8 6.92e−1 7.65e−2 4.97e−1 1.62e−1 2.55e−2 7.09e−2 
 16 1.86e−5 6.79e−6 9.59e−7 9.50e−6 7.65e−6 7.95e−5 
 24 4.38e−9 3.81e−8 5.85e−9 5.05e−10 4.45e−10 1.62e−8 
 
||𝑣24 − 𝑣̂||∞

8 8.14e−1 6.16e−2 7.58e−1 5.68e−2 2.85e−2 2.43e−2 
 16 1.96e−7 5.67e−8 2.51e−5 9.34e−8 1.19e−7 4.69e−6 
 24 3.49e−10 9.29e−11 2.56e−10 7.79e−9 3.49e−8 4.73e−9 

Table 9
A comparison of ‖𝑭 (𝒙)‖2 between Algorithm 1 and other methods for 𝑝 = 3 and 𝑞 = 3.
 Newtonian iteration in [33] LSTR method in [4] Algorithm 1
 𝑛𝑖𝑡 IG1 IG2 𝑛𝑖𝑡 IG1 IG2 𝑛𝑖𝑡 IG1 IG2  
 5 2.24e10 8.17e15 5 5.92e8 8.32e10 5 2.51e9 6.92e12  
 10 1.44e14 8.38e19 15 2.91e5 4.82e7 15 9.91e7 6.93e8  
 15 9.13e20 7.48e23 25 9.62e1 7.71e2 25 4.73e3 9.53e4  
 20 7.81e27 7.74e29 35 3.19e−5 8.50e−4 35 2.85e−3 6.71e−4  
 – – 45 5.97e−10 3.92e−10 45 4.52e−11 7.83e−12 
 T – – 9.34 9.83 6.31 5.38  

Fig. 3.8. Profiles of (|𝑢|𝑢)′ and (|𝑢|𝑢)′′ vs. 𝑢 on [−1, 1].

Fig. 3.9. Profiles of 1-peak solutions for 𝑝 = 2, 𝑞 = 2.

Case 3: The problem (3.3) with 𝐺1(𝑢(𝑥), 𝑣(𝑥)) = 𝜂1𝑢+𝜇1𝑢3 + 𝛽𝑢𝑣2 and 𝐺2(𝑢(𝑥), 𝑣(𝑥)) = 𝜂2𝑣+𝜇2𝑣3 + 𝛽𝑢2𝑣 arises from the Bose–Einstein 
condensates (BEC) [35], which together with the domain 𝛺 = (0, 1)× (0, 1). The solution set of the problem has additional structural 
symmetries, that is, if (𝑢, 𝑣) is a solution, then (±𝑢,±𝑣) are solutions. With numerical tests, we choose 𝜂1 = 𝜂2 = −1, 𝜇1 = 𝜇2 = 1, 𝛽 =
−5. In Figs.  3.17–3.20, we present multiple solutions, and some multiple solutions also show the symmetry. For example, if (𝑢, 𝑣)
13 
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Fig. 3.10. Profiles of 2-peak sign-changing solutions for 𝑝 = 2, 𝑞 = 2.

Fig. 3.11. Profiles of multi-peak solutions for 𝑝 = 2, 𝑞 = 2.

Table 10
Accuracy of the Algorithm 1 for 𝑝 = 2 and 𝑞 = 2.
 𝑁 I II III IV V VI  
 
||𝑢24 − 𝑢̂||∞

8 5.45e−2 1.79e−2 5.93e−3 3.74e−1 5.86e−1 9.32e−1  
 16 4.82e−6 3.81e−5 9.65e−7 2.73e−6 4.82e−6 9.15e−5  
 24 3.92e−9 8.19e−8 2.87e−9 9.04e−10 8.73e−10 6.16e−8  
 
||𝑣24 − 𝑣̂||∞

8 6.53e−2 7.30e−2 7.81e−1 8.47e−2 1.83e−1 5.26e−3  
 16 4.82e−8 7.73e−8 6.73e−5 6.10e−7 1.09e−9 5.83e−7  
 24 8.27e−10 6.14e−12 6.97e−11 9.94e−9 5.83e−11 4.03e−10 

represents the type-I solution in Fig.  3.17a, the type-II solution in Fig.  3.17b is (−𝑢,−𝑣). A similar situation is also observed in Fig. 
3.18. Multiple solutions presented in Figs.  3.19–3.20 also have the symmetry, and here we will not repeat them. In Tables  11–12 
with different initial guesses in (3.5), numerical results on these multiple solutions are given, where the efficiency of our method is 
shown once again. 

IG1 ∶

{

𝑢̃(0) = ones(𝑁 + 1, 𝑁 + 1)
𝑣̃(0) = −ones(𝑁 + 1, 𝑁 + 1),

IG2 ∶

{

𝑢̃(0) = − sin(ones(𝑁 + 1, 𝑁 + 1))
𝑣̃(0) = −cos(ones(𝑁 + 1, 𝑁 + 1)).

(3.5)

4. Concluding remarks

In this paper, an efficient trust region LM-Deflation method was proposed to compute multiple solutions of semilinear elliptic 
systems. Based on numerical experiments presented in Section 3, the trust region LM-Deflation method has great advantages in 
finding multiple solutions of semilinear elliptic systems compared with other methods given in [4,33]. In addition, our method 
can also work well for equations with only first-order derivative information. In subsequent studies, we will continue to apply and 
extend the proposed method to address more challenging problems in the future, including its convergence analysis.
14 
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Fig. 3.12. Profiles of an asymmetric positive solution (a) and a symmetric positive solution (b).

Fig. 3.13. Profiles of an asymmetric positive solution (a) and a symmetric sign-changing solution (b).

Fig. 3.14. Profiles of multi-peak solutions to case 2 for 𝑝 = 3 and 𝑞 = 3.
15 
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Fig. 3.15. Profiles of solutions I and II for 𝑝 = 2 and 𝑞 = 2.

Fig. 3.16. Profiles of solutions III and IV for 𝑝 = 2 and 𝑞 = 2.

Fig. 3.17. Profiles of solution set 1.
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Fig. 3.18. Profiles of solution set 2.

Fig. 3.19. Profiles of solution set 3.

Fig. 3.20. Profiles of solution set 4.
17 
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Table 11
Accuracy of Algorithm 1 to case 3.
 𝑁 I II III IV V VI VII VIII  
 
||𝑢24 − 𝑢̂||∞

8 3.14e−1 7.06e−2 8.23e−1 4.38e−1 4.89e−3 7.43e−1 3.18e−2 6.94e−2  
 16 3.17e−7 3.81e−6 4.45e−5 3.92e−6 2.76e−6 7.65e−7 4.61e−6 7.95e−6  
 24 6.55e−9 5.52e−9 1.86e−9 7.09e−11 7.54e−10 9.73e−9 2.76e−11 6.94e−10 
 
||𝑣24 − 𝑣̂||∞

8 7.13e−1 5.05e−2 2.54e−1 8.14e−2 9.59e−2 6.79e−2 2.55e−1 8.40e−1  
 16 2.76e−7 1.62e−7 1.19e−6 6.99e−7 1.49e−6 5.47e−6 6.79e−6 5.85e−5  
 24 3.80e−11 7.79e−11 5.30e−12 2.51e−11 7.53e−11 1.19e−11 7.58e−10 4.69e−10 

Table 12
A comparison of ‖𝑭 (𝒙)‖2 between our method and other methods for case 3.
 Newtonian iteration in [33] LSTR method in [4] Algorithm 1
 𝑛𝑖𝑡 IG1 IG2 𝑛𝑖𝑡 IG1 IG2 𝑛𝑖𝑡 IG1 IG2  
 5 1.02e8 6.01e10 5 4.50e6 8.25e8 5 4.42e8 1.52e9  
 10 7.94e15 2.62e17 10 1.06e3 9.61e3 10 9.13e4 7.79e5  
 15 3.11e23 6.98e25 15 6.54e1 2.28e0 15 6.89e1 6.54e0  
 20 7.01e27 9.13e35 20 9.96e−3 7.81e−3 20 7.81e−5 5.28e−6  
 – – 25 5.28e−7 2.28e−7 25 4.63e−10 1.65e−11 
 T – – 8.01 9.21 6.09 5.97  
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